键由玻璃的磷酸盐成分贡献。结果,Inaba等人对Young的模量的预测。[3]比依赖MM模型中使用的氧化物解离能的值更接近测量值,特别是对于磷酸盐玻璃。在最近对Okamoto等人的Zn-SN-磷酸玻璃机械性能的研究中。[4],通过使用金属氧键距离和金属离子配位数(由X射线和中子衍射研究确定[5-7])来修改Inaba模型[5-7],以钙化离子堆积分数(V P)。此外,Okamoto等。修改了Inaba等人使用的解离能。与四面体相比,与邻近的p -tetrahedra相比,通过一个(q 1)或两个(q 2)布里牛根键相比,要考虑不同的协调环境,特别是对于SN 2 + -Polyhedra,并说明了孤立的PO 4 3-(Q 0)四面体的更大刚度。Okamoto的单个氧化物解离能和体积的新值改善了对弹性模量和维克斯硬度的预测,这些弹性模量和维克硬度的硬度是几个系列X Zno-(67 -x)Sno -33p 2 O 5玻璃,具有有用的光子末端特性的组合物[4]。最近,Shi等人。[8]通过指出构成氧化物玻璃结构的金属多层的有效体积并不是构成多面体的离子半径的总和,但还必须在该多面体中包括无知的空间。通过更换
•N-辛烷几何形状优化•N-辛烷C-H和C-C键能扫描•H 2几何优化和解离能•N-辛烷值振动频率•N-辛烷值MD MD模拟•其他烃TD-DFTB/Chimes兴奋能量
超越了ohnishi参数:将解离能与聚合物蚀刻相关联Stanfield Youngwon Lee *,Min Kyung Jang,Jae Yun Ahn,Jae Yun Ahn,Jung Jung June Lee和Jin Hong Park Dupont Electronics&Internalics&Internalics&Industrial,20 Samsung 1-Ro 5gil,Hwaseong-si,Gyeeegi-siea,gyeeeegi-do, *stanfield.lee@dupont.com随着光刻图案的大小继续减少,具有快速蚀刻速率和高蚀刻选择性的功能性子层对于维持良好的长宽比和促进成功的模式转移是必要的。因此,预测聚合物蚀刻速率的方法的研究和开发对于设计聚合物在光刻子层中的成功利用至关重要。从这些方法中,OHNISHI参数通常被称为聚合物在某些蚀刻条件下的易于易于。,尽管O.P.值可以是一个强大的预测工具,在某些单体的实现中发现了实际蚀刻率的差异。试图阐明导致这些变化的因素,计算了一系列具有已知蚀刻速率的聚合物的键解离能。与先前引用的研究结合使用,我们的初始发现概述了采用解离能作为OHNISHI参数的替代方案的优势。关键字:ohnishi参数,蚀刻速率,功能性子公司,债券解离能1。引言随着光刻术继续向较低波长的能源过渡,以满足对较小模式大小的需求[1-3],因此新的材料设计正在不断变化,以满足每一代的需求。然而,尽管每一代人的逝世经常导致不同的子层要求,但某些关键参数仍然坚定不移。其中一种是具有相对更快的蚀刻速率或更高蚀刻性的材料,而蚀刻性的选择性比构成光蛋白天(PR)层的材料。可以提出,随着光刻堆栈的大小不断缩小[4],蚀刻率不再是主要因素。的确,对有机单层的研究[5-10],薄无机子层[11-13],甚至没有有机子层[14]的研究。然而,诸如涂层均匀性,差的模式转移和粘附等问题以及有机抵抗和底层之间的兼容性问题阻碍了这些方法的广泛应用[15,16]。
用碳纳米颗粒催化的石油碳氢化合物的液相有氧氧化集中在多组分石油原料的合理加工上的实际实用性。使用含金属的碳纳米结构作为催化剂,可以在最现代的绑带中考虑已知的氧化过程,并同时提出了有关动力学和过程机制的相关问题。本文描述了在存在含铁的多壁碳纳米管FE@MWCNT的情况下,柴油燃料石蜡 - 萘型的正式动力学定期。工作的目的是确定催化剂的活性及其作用机理。在80°C下进行反应,在该反应下,已知氢过氧化物的热分解几乎不存在,并且反应不会引发。诱导期,动力学曲线的曲线和氧气吸收率是催化剂活性的标准。结果表明,Fe@MWCNT添加剂具有提高柴油分数有氧氧化速率的显着能力。一般的石油级催化氧化方案,其中提出了纳米碳载体上的催化剂降低C-H键的解离能,并激活水氧化物将水氧化物分解为活性活性反应性颗粒。
摘要:量子计算正在成为一种新的计算范式,有可能改变包括量子化学在内的多个研究领域。然而,当前的硬件限制(包括有限的相干时间、门不保真度和连通性)阻碍了大多数量子算法的实现,需要更具抗噪声能力的解决方案。我们提出了一种基于跨相关 (TC) 方法的显式相关 Ansatz,以直接针对这些主要障碍。这种方法无需任何近似,将波函数中的相关性直接转移到哈密顿量中,从而减少了使用嘈杂的量子设备获得准确结果所需的资源。我们表明,TC 方法允许更浅的电路并改善了向完整基组极限的收敛,在化学精度范围内提供能量以使用更小的基组进行实验,从而减少量子比特。我们通过使用两个和四个量子比特分别计算氢二聚体和氢化锂的键长、解离能和振动频率,接近实验结果,从而展示了我们的方法。为了展示我们方法的当前和近期潜力,我们进行了硬件实验,结果证实 TC 方法为在当今的量子硬件上进行精确的量子化学计算铺平了道路。
在本文中,研究了25种苯酚和邻苯二甲胺-N-氧基自由基(Pino C)和DPPH C之间的HAT反应。在这项工作中检查的酚和自由基的父结构和标记在方案1中显示了。包括天然酚类的活化酚的Ch 3 Cn中的时间分解动力学研究(2,6-二甲基,2,6-二 - 二 - 丁基-4-取代15,16和4-构酚酚)17(1H - 18H)17(1H - 18H),氢酚类酚类和酚类酚类18(19H) eic酸(23H),2,2,5,7,8-五甲基甲基chroman-6- OL(PMC,24H)16和带有放射线的A托酚(A-TocoH,25H)19。 在先前的工作中,8,20 - 24个四个物理参数,h-donor XH的四个物理参数,键解离能d g o(XH),动力学固有电阻能量d g s xh/x,热运动参数d g s o(xh)和d g s o(x)和d g s o(x)已用于评估h-含量和h- themist of xh的XH XH和XH的XH XH XH,并在XH中进行了启用。和实际的帽子反应。 d g o(XH)是热力学因素,通常用于评估XH和H-抽象能力的潜在H含能力。 d g s xh / x是XH(XH + X / X + XH)自交换HAT反应的激活自由能。 这是帽子反应的动力学抗性,因为热纳米驱动力为零,这意味着动力学内在包括天然酚类的活化酚的Ch 3 Cn中的时间分解动力学研究(2,6-二甲基,2,6-二 - 二 - 丁基-4-取代15,16和4-构酚酚)17(1H - 18H)17(1H - 18H),氢酚类酚类和酚类酚类18(19H) eic酸(23H),2,2,5,7,8-五甲基甲基chroman-6- OL(PMC,24H)16和带有放射线的A托酚(A-TocoH,25H)19。 在先前的工作中,8,20 - 24个四个物理参数,h-donor XH的四个物理参数,键解离能d g o(XH),动力学固有电阻能量d g s xh/x,热运动参数d g s o(xh)和d g s o(x)和d g s o(x)已用于评估h-含量和h- themist of xh的XH XH和XH的XH XH XH,并在XH中进行了启用。和实际的帽子反应。 d g o(XH)是热力学因素,通常用于评估XH和H-抽象能力的潜在H含能力。 d g s xh / x是XH(XH + X / X + XH)自交换HAT反应的激活自由能。 这是帽子反应的动力学抗性,因为热纳米驱动力为零,这意味着动力学内在包括天然酚类的活化酚的Ch 3 Cn中的时间分解动力学研究(2,6-二甲基,2,6-二 - 二 - 丁基-4-取代15,16和4-构酚酚)17(1H - 18H)17(1H - 18H),氢酚类酚类和酚类酚类18(19H) eic酸(23H),2,2,5,7,8-五甲基甲基chroman-6- OL(PMC,24H)16和带有放射线的A托酚(A-TocoH,25H)19。 在先前的工作中,8,20 - 24个四个物理参数,h-donor XH的四个物理参数,键解离能d g o(XH),动力学固有电阻能量d g s xh/x,热运动参数d g s o(xh)和d g s o(x)和d g s o(x)已用于评估h-含量和h- themist of xh的XH XH和XH的XH XH XH,并在XH中进行了启用。和实际的帽子反应。 d g o(XH)是热力学因素,通常用于评估XH和H-抽象能力的潜在H含能力。 d g s xh / x是XH(XH + X / X + XH)自交换HAT反应的激活自由能。 这是帽子反应的动力学抗性,因为热纳米驱动力为零,这意味着动力学内在包括天然酚类的活化酚的Ch 3 Cn中的时间分解动力学研究(2,6-二甲基,2,6-二 - 二 - 丁基-4-取代15,16和4-构酚酚)17(1H - 18H)17(1H - 18H),氢酚类酚类和酚类酚类18(19H) eic酸(23H),2,2,5,7,8-五甲基甲基chroman-6- OL(PMC,24H)16和带有放射线的A托酚(A-TocoH,25H)19。 在先前的工作中,8,20 - 24个四个物理参数,h-donor XH的四个物理参数,键解离能d g o(XH),动力学固有电阻能量d g s xh/x,热运动参数d g s o(xh)和d g s o(x)和d g s o(x)已用于评估h-含量和h- themist of xh的XH XH和XH的XH XH XH,并在XH中进行了启用。和实际的帽子反应。 d g o(XH)是热力学因素,通常用于评估XH和H-抽象能力的潜在H含能力。 d g s xh / x是XH(XH + X / X + XH)自交换HAT反应的激活自由能。 这是帽子反应的动力学抗性,因为热纳米驱动力为零,这意味着动力学内在包括天然酚类的活化酚的Ch 3 Cn中的时间分解动力学研究(2,6-二甲基,2,6-二 - 二 - 丁基-4-取代15,16和4-构酚酚)17(1H - 18H)17(1H - 18H),氢酚类酚类和酚类酚类18(19H) eic酸(23H),2,2,5,7,8-五甲基甲基chroman-6- OL(PMC,24H)16和带有放射线的A托酚(A-TocoH,25H)19。在先前的工作中,8,20 - 24个四个物理参数,h-donor XH的四个物理参数,键解离能d g o(XH),动力学固有电阻能量d g s xh/x,热运动参数d g s o(xh)和d g s o(x)和d g s o(x)已用于评估h-含量和h- themist of xh的XH XH和XH的XH XH XH,并在XH中进行了启用。和实际的帽子反应。d g o(XH)是热力学因素,通常用于评估XH和H-抽象能力的潜在H含能力。d g s xh / x是XH(XH + X / X + XH)自交换HAT反应的激活自由能。这是帽子反应的动力学抗性,因为热纳米驱动力为零,这意味着动力学内在
木质素是产生生物质芳香族化合物的最有前途的候选者。然而,挑战在于在轻度条件下木质素单体之间的C键裂解,因为这些键具有高解离能。电化学氧化允许轻度切割C -C键,被认为是一种有吸引力的解决方案。为了在木质素的价值中实现低能消耗,使用高效的电催化剂是必不可少的。在这项研究中,开发了一种精心设计的催化剂,该催化剂由掺杂二氧化镍(Oxy)氢氧化物的钼二硫化物异质结的精心化催化剂。在高价状态下钼的存在促进了丁基氢过氧化物的吸附,从而导致临界自由基中间体的形成。此外,掺杂掺杂的掺杂掺入镍的电子结构,从而导致较低的能屏障。结果,异质结催化剂在木质素模型化合物中裂解Cα -Cβ键的选择性为85.36%,在环境条件下达到了93.69%的底物转换。此外,电催化剂解聚了有机溶质木质素(OL)的49.82 wt%的可溶性级分,导致高达13 wt%的芳族单体的产率。很明显,还使用工业牛皮纸木质素(KL)证明了制备的电催化剂的有效性。因此,这项研究提供了一种实施木质素精炼中电催化氧化的实用方法。
非热血浆辅助甲烷热解已成为轻度条件下氢生产的一种有希望的方法,同时产生了有价值的碳材料。在此,我们开发了一个等离子化学动力学模型,以阐明与氢气解析涉及氢和固体碳(GA)反应器内的甲烷热解的潜在反应机制。开发了一个零维(0D)化学动力学模型,以模拟基于GA的甲烷热解过程中的血浆化学,并结合了涉及电子,激发物种,离子和重物的反应。该模型准确地预测了与实验数据一致的甲烷转化和产品选择性。观察到氢与甲烷转化率之间存在很强的相关性,主要是由反应CH 4 + H→CH 3 + H 2驱动,对氢的形成贡献44.2%,而甲烷耗竭的37.7%。电子与碳氢化合物的影响碰撞起着次要作用,占H 2形成的31.1%。这项工作提供了对GA辅助甲烷热解中固体碳形成机制的详细研究。大多数固体碳源于通过反应E + C 2 H 2→E + C 2 + H 2 /2H的电子撞击C 2 H 2的分离以及随后的C 2缩合。c 2自由基被突出显示为固体碳形成的主要因素,占总碳产量的95.0%,这可能是由于C 2 H 2中相对较低的C - H解离能。这项动力学研究提供了对H 2背后的机制和在GA辅助甲烷热解过程中的固体形成机制的全面理解。