由于评估标准多重且相互交织,而且未经证实的新技术本身具有不确定性,因此很难评估 NASA 的先进技术项目。传统的多标准决策模型往往忽略了评估过程中的相互依赖性和不确定性。我们提出了一种模糊加权影响非线性量规系统 (WINGS) 来评估肯尼迪航天中心 (KSC) 的先进技术项目。WINGS 方法使用表意因果图来揭示复杂问题中相互交织的标准及其因果关系。模糊集理论是一种有效的方法,它使用模糊逻辑来模拟定义不明确的问题中的不确定性。本研究提出的模糊 WINGS 方法通过识别依赖关系 (影响) 的方向及其强度以及评估标准的强度来揭示评估标准之间的相互依赖关系。模糊判断用于应对未经测试的新技术中的不确定性。传统的 WINGS 方法不考虑解空间中的参考点。为此,我们引入了理想解和最低点解的概念,这是 WINGS 的新概念,根据备选方案与理想解(或最低点解)之间的欧几里得距离对备选方案进行排序。最后,我们提出了一个案例研究,根据六个相互交织的标准和 38 个子标准对 KSC 的十个先进技术项目进行评估,以证明本研究提出的新模糊 WINGS 方法的适用性。
现实世界优化问题的日益复杂凸显了这项研究的重要性,因为经典算法无法在这些情况下提供有效的答案。由于非线性优化问题在许多领域普遍存在,因此需要创新方法来快速且可扩展地解决这些问题。由于量子计算具有叠加原理和内在并行性,因此它在加速优化过程和克服经典限制方面具有巨大的潜力。然而,将量子算法 (I-QA) 集成到现实世界的应用中并不总是一帆风顺的。在保持量子相干性、纠正错误和在硬件限制内工作方面存在重大挑战。为了能够通过量子并行性同时探索解空间,本研究提出了混合量子梯度-经典方法 (HQG-CA),该方法利用参数化量子电路来表示可能的解。此外,通过将量子梯度信息应用于量子态空间中的直接优化来提高收敛速度。金融投资组合的优化、机器学习模型参数的调整以及物流路线的优化是 HQG-CA 在许多行业中的一些应用。本摘要探讨了这些应用,突出了 HQG-CA 在解决现实世界中的优化问题方面的革命性潜力。通过全面的模拟实验评估了 HQG-CA 的有效性。基于广泛的测试和与传统替代方案的比较,讨论了算法加速、解决方案准确性和可扩展性等性能指标。本研究对 HQG-CA 解决非线性优化问题的潜力进行了全面评估。
摘要 随着早期量子处理单元 (QPU) 的出现,量子计算机制造领域的最新进展引起了广泛领域的广泛关注。虽然当代量子机器的尺寸和功能非常有限,但成熟的 QPU 最终有望在优化问题上表现出色。这使得它们成为解决数据库问题的有吸引力的技术,其中许多数据库问题都基于具有大解空间的复杂优化问题。然而,量子方法在数据库问题上的应用在很大程度上仍未得到探索。在本文中,我们解决了长期存在的连接排序问题,这是研究最广泛的数据库问题之一。QPU 不需要运行任意代码,而是需要特定的数学问题编码。最近提出了一种连接排序问题的编码,允许在量子硬件上优化第一个小规模查询。然而,它基于对 JO 的混合整数线性规划 (MILP) 公式的忠实转换,并继承了 MILP 方法的所有限制。最引人注目的是,现有的编码仅考虑具有左深连接树的解空间,这往往会产生比一般的浓密连接树更大的成本。我们针对连接顺序问题提出了一种新颖的 QUBO 编码。我们不是转换现有公式,而是构建一种针对量子系统量身定制的原生编码,这使我们能够处理一般的浓密连接树。这使得 QPU 的全部潜力都可用于解决连接顺序优化问题。
摘要 住宅供暖和制冷行业日益电气化,主要使用电动热泵 (HP) 与热能/电能存储系统相结合。虽然这些发展有助于增加该行业中可再生和低碳能源的份额,但要充分利用该技术的潜力,需要对这些系统进行智能控制,以考虑未来预测的可再生能源可用性和相应的 HP 系统性能。然而,以适合智能控制的方式对具有复杂内部动态的系统进行建模具有挑战性。模型需要足够复杂才能准确捕捉系统的非线性和复杂性,同时又要足够快,以便在合适的计算时间内彻底搜索解空间。动态规划 (DP) 是一种很有前途的智能控制方法,因为它结合了使用复杂非线性模型的能力,同时是一种穷举搜索算法,保证找到全局最优值。本文介绍了一个创新的建模框架,该框架包含 HP 变电站主要组件(即 HP 和热能存储 - TES)的降阶模型 (ROM),以适合在 DP 中使用的方式进行阐述;这些模型包括影响系统性能的重大物理操作约束(例如,HP 压缩机变速、非线性性能系数 - COP - 依赖于室外和配送温度),同时最大限度地减少优化器需要处理的状态变量数量(即 TES 温度、HP 热容量和电容量)。在应用于示例 HP 系统时,我们的系统模型与用作参考基础事实的详细 TRNSYS 对应模型相比表现出色。该系统通过动态规划优化方法实现了显着的成本节约,与传统的基于规则的控制相比,功耗降低了 13%。
经典复杂性理论中的一个著名成果是 Savitch 定理,该定理指出非确定性多项式空间计算 (NPSPACE) 可以通过确定性多空间计算 (PSPACE) 来模拟。在这项工作中,我们开始研究 NPSPACE 的量子类似物,记为 Streaming-QCMASPACE (SQCMASPACE),其中指数长的经典证明被流式传输到多空间量子验证器。我们首先证明 Savitch 定理的量子类似物不太可能成立,因为 SQCMASPACE = NEXP 。为了完整起见,我们还引入了具有指数长流式量子证明的伴随类 Streaming-QMASPACE (SQMASPACE),并证明 SQMASPACE = QMA EXP(NEXP 的量子类似物)。然而,我们的主要重点是研究指数长的流式经典证明,接下来我们将展示以下两个主要结果。第一个结果表明,与经典设置形成鲜明对比的是,当允许指数长度的证明时,量子约束满足问题(即局部哈密顿量)的解空间始终是连通的。为此,我们展示了如何通过一系列局部幺正门模拟单位超球面上的任何 Lipschitz 连续路径,代价是增加电路尺寸。这表明,如果演化速度足够慢,量子纠错码无法检测到一个码字错误地演化为另一个码字,并回答了 [Gharibian, Sikora, ICALP 2015] 关于基态连通性问题的未决问题。我们的第二个主要结果是,任何 SQCMASPACE 计算都可以嵌入到“非纠缠”中,即嵌入到具有非纠缠证明器的量子约束满足问题中。正式地,我们展示了如何将 SQCMASPACE 嵌入到 [Chailloux, Sattath, CCC 2012] 的稀疏可分离汉密尔顿问题(1 / 多承诺差距的 QMA(2) 完全问题)中,代价是随着流式证明大小的扩大而扩大承诺差距。作为推论,我们获得了第一个系统构造,用于在任意多证明者交互式证明系统上获得 QMA (2) 型上限,其中 QMA (2) 承诺差距随着交互式证明中的通信位数呈指数增长。我们的构造使用了一种新技术来利用解缠结来模拟二次布尔函数,这在某种意义上允许历史状态对未来进行编码。
为了实现这一目标,必须增加空间规划过程中环境评估工具的变革潜力。这是BioPolue项目中任务2.3的重点,该项目旨在“了解海洋和EIA中使用的空间规划和基础设施开发中的因果机制,以探索如何改进这些机制,以增强其在为生物多样性产生变革性行动中的作用中的作用”(生物生物生物项目描述)。任务2.3涉及注释和分析环境影响评估(EIA)和战略环境评估(SEA)报告中的因果关系,从而导致了与空间计划和管理工具相关的因果关系和生物多样性缓解层次结构的因果图工具。建立在这个基础上,系统思维方法提供了一种强大的方法,可以绘制和分析潜在空间变化涉及的因果关系,如因果环图(CLD)所示。这种方法不仅可以补充,而且通过确定互连和反馈产生的最关键要素,过程和动态来显着提高环境评估的有效性。这些因素在空间计划过程中的决策和使用中的使用至关重要。不仅了解直接影响,还了解空间规划的反馈机制,重点和工具可以解决自我生成过程,从而支持计划目标。因此,它增加了在空间规划过程中环境评估工具的变革潜力。此外,系统分析揭示了系统结构和产生的动态过程,这些过程是由正(增强)和负(平衡)反馈回路的相互作用产生的(Sterman,2000)。这两种机制对于理解在计划,计划和项目的影响下的要素之间的因果关系和非线性动态至关重要。它还促进了可行杠杆点的识别,这是系统中可能受到影响以获得更好结果的关键点。确定这些要点可能会导致有关避免,最小化或弥补潜在影响以及增强生物多样性标准的措施机会的知情建议(Meadows,1997)。因此,通过将这些改进的海洋和EIA工具整合到空间规划过程中,可以大大提高增强生物多样性和实现可持续发展目标的变革性潜力。这种对因果效应的理解的实际影响取决于实际的计划过程和应用程序的上下文。