在实践中,在训练 AI 模型时,训练数据的标记主要用于对图像进行分类(例如汽车或动物)。另一方面,文本的标记有助于识别情绪或特定关键词。对于旨在识别语音的 AI 系统的训练,标记还可以包括转录录音或识别音频输入文件中的特定噪音(例如背景中的交通或飞机)。
van der waals异质结构中的Moiré超级晶格代表了高度可调的量子系统,在多体模型和设备应用中都引起了极大的兴趣。然而,在室温下,Moiré电位对光物质相互作用的影响在很大程度上仍然没有。在我们的研究中,我们证明了MOS 2 /WSE 2中的Moiré潜力促进了室温下层间激子(IX)的定位。通过执行反射对比光谱,我们证明了原子力显微镜实验支持的原子重建在修饰内部激子中的重要性。降低扭转角时,我们观察到IX寿命会更长,并且发光增强,表明诸如缺陷之类的非辐射衰减通道被Moiré电位抑制。此外,通过将Moiré超晶格与硅单模腔的整合,我们发现,使用Moiré捕获的IXS的设备显示出明显较低的阈值,与利用DelaCalized IXS的设备相比,较小的一个数量级。这些发现不仅鼓励在升高温度下在Moiré超晶格中探索多体物理学,而且还为利用光子和光电应用中的这些人工量子材料铺平了道路。
机器学习方法在生物识别和个人信息处理(例如法医、电子医疗、招聘和电子学习)领域的重要性日益增加。在这些领域,基于机器学习方法构建的系统的白盒(人类可读)解释可能变得至关重要。归纳逻辑编程 (ILP) 是符号 AI 的一个子领域,旨在自动学习有关数据处理的声明性理论。从解释转换中学习 (LFIT) 是一种 ILP 技术,可以学习与给定黑盒系统等同的命题逻辑理论(在特定条件下)。本研究通过检查 LFIT 在特定 AI 应用场景中的可行性,迈出了将准确的声明性解释纳入经典机器学习的通用方法的第一步:基于使用机器学习方法生成的自动工具进行公平招聘,用于对包含软生物特征信息(性别和种族)的简历进行排名。我们展示了 LFIT 对这个特定问题的表达能力,并提出了一个可应用于其他领域的方案。
摘要背景:在人工智能 (AI) 应用于医疗保健领域时,可解释性是最受争议的话题之一。尽管人工智能驱动的系统已被证明在某些分析任务中表现优于人类,但缺乏可解释性仍然引发批评。然而,可解释性不是一个纯粹的技术问题,相反,它引发了一系列需要彻底探索的医学、法律、伦理和社会问题。本文对可解释性在医学人工智能中的作用进行了全面评估,并对可解释性对于将人工智能驱动的工具应用于临床实践的意义进行了伦理评估。方法:以基于人工智能的临床决策支持系统为例,我们采用多学科方法从技术、法律、医学和患者的角度分析了可解释性对医学人工智能的相关性。基于这一概念分析的结果,我们随后进行了伦理评估,使用 Beauchamp 和 Childress 的“生物医学伦理原则”(自主、仁慈、不伤害和正义)作为分析框架,以确定医疗 AI 中可解释性的必要性。结果:每个领域都强调了一组不同的核心考虑因素和价值观,这些因素与理解可解释性在临床实践中的作用有关。从技术角度来看,可解释性必须从如何实现和从发展角度来看有什么好处两个方面来考虑。从法律角度来看,我们将知情同意、医疗器械认证和批准以及责任确定为可解释性的核心接触点。医学和患者的观点都强调了考虑人类行为者和医疗 AI 之间相互作用的重要性。我们得出的结论是,在临床决策支持系统中忽略可解释性会对医学的核心伦理价值观构成威胁,并可能对个人和公共健康产生不利影响。结论:为了确保医疗 AI 兑现其承诺,需要让开发人员、医疗保健专业人员和立法者意识到医疗 AI 中不透明算法的挑战和局限性,并促进多学科合作。关键词:人工智能、机器学习、可解释性、可解释性、临床决策支持
© 编辑(如适用)和作者 2022。本书是开放获取出版物。开放获取 本书根据知识共享署名 4.0 国际许可证(http://creativecommons.org/licenses/by/4.0/)的条款获得许可,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信用,提供知识共享许可证的链接并指明是否进行了更改。本书中的图像或其他第三方材料包含在本书的知识共享许可证中,除非在材料的致谢中另有说明。如果材料未包含在本书的知识共享许可证中,并且您的预期用途不被法定法规允许或超出允许用途,则您需要直接从版权所有者处获得许可。本出版物中使用一般描述性名称、注册名称、商标、服务标记等。即使没有具体声明,也不意味着这些名称不受相关保护法律和法规的约束,因此可以自由使用。出版商、作者和编辑可以放心地认为,本书中的建议和信息在出版之日是真实准确的。出版商、作者或编辑均不对此处包含的材料或可能出现的任何错误或遗漏提供明示或暗示的保证。出版商对已出版地图和机构隶属关系中的司法管辖权主张保持中立。
从根本上讲,保护融资工具旨在提供可持续的资金流和/或提供投资回报率。产生现金流量和来自自然投资的回报需要某人愿意支付的价值流。这就是为什么林业和农业企业具有相关商品(例如木材和农作物)对投资者来说更为直接的途径:现金流以及提供投资回报率的能力。生态系统服务,无论是碳固换,洪水调节还是改善的空气质量都与实际成本有关。但是,为了提供投资回报率,金融工具需要使三个不同的群体保持一致:愿意为服务付费的人,从交付中受益的人以及将得到补偿的人。
鉴于人工智能开发人员在确保人工智能系统、其成果和此类系统用户的责任方面发挥着重要作用,我们需要他们采取负责任、合乎道德和负责任的方法。因此,我们建议这些参与者参与旨在产生负责任的人工智能设计和使用的政策制定过程。根据我们的实证研究结果,我们提出了几项建议,以弥补当前在追求负责任的人工智能时将道德原则、认证标准和解释方法作为问责机制所发现的缺陷。我们希望这些建议能够有助于讨论如何在实践中确保问责制,同时兼顾开发人员、研究人员和公众的观点。