等方面 . 人机功能分配主要包括静态和动态两种类型 , 静态功能分配是从功能特性和需求分析入手 , 通过比较人 和系统在完成该功能上的能力优势或绩效优劣 , 决定该功能分配给人还是系统 . 动态功能分配方法则是在静态 人机功能分配的基础上 , 当动态触发机制响应时 , 允许系统在运行阶段根据情况的变化将功能在人与系统之间 动态地重新分配 , 提高整体的工作效率 . 多智能体的任务分配是指在作战开始前 , 指挥中心通常会根据已掌握的 战场信息 , 对己方作战单元进行任务预分配 . 但随着战场情景变化以及突发情况的出现 , 预分配方案可能会使得 执行任务的效能降低 , 多智能体如何调整自身任务 , 使得执行任务的效能保持最大是其研究的主要内容 . 计算机 任务调度研究的是将任务动态地调用给各个虚拟机并提供给用户使用 , 怎样合理地将任务分配给不同的虚拟机 , 进而提升整个系统的性能是其研究的重点 . 以上分配原则对于多乘员分配有很好的参考价值 , 但舱室乘员间任 务分配时 , 主要考虑到人的特性 , 需要以人的理论基础来加以研究 [4] . 针对实际作战过程中 , 乘员应对非预期事件效率低下的问题 , 本文提出了一种多乘员协同动态任务分配方 法 . 在非预期事件触发时 , 对任务进行 DAG 分解及分层 , 根据乘员脑力负荷、乘员能力、任务相关度以及时间成 本四个因素 , 按照一定的任务分配顺序 , 基于 AHP-TOPSIS 方法进行乘员的优选 , 实时更新乘员状态 , 并以此为 依据进行下一任务的分配 . 任务分配过程可实现随乘员状态变化而动态调整 , 达到负荷均衡、效能最优 , 从而将 多任务分配问题简化为单个任务的多属性决策问题 .
太阳喷发是日冕磁场能量的爆炸性释放,表现为太阳耀斑和日冕物质抛射。观测表明,喷发区的核心往往是剪切磁拱,即单一的双极结构,特别是在光球层,相应的磁极性沿强梯度极性反转线(PIL)拉长。什么机制会在单一双极场中触发喷发,以及为什么强PIL的场有利于产生喷发,目前仍不清楚。最近,我们利用高精度模拟,建立了太阳喷发的基本机制,即光球层准静态剪切运动驱动的双极场形成内部电流片,随后快速磁重联触发和驱动喷发。这里我们结合理论分析和数值模拟,研究了不同光球磁通分布即磁图下的基本机制的行为。研究表明,不同磁图的双极场在连续剪切下都表现出类似的演变——从磁能的缓慢储存到快速释放——这符合基本机制并证明了所提出机制的稳健性。此外我们发现具有较强PIL的磁图产生较大的喷发,关键原因是具有较强PIL的剪切双极场可以实现更多的非势能,并且它们的内部电流片可以在较低的高度形成较高的电流密度,从而可以更有效地重联。这也为在具有强PIL的活跃区域中观测到的喷发提供了可行的触发机制。
上下文。不寻常的是,仍然存在未注明的更换外观(Cl)活性银河核(AGN)的特征。因此,在部分AGN中观察到的Cl现象背后的触发机制仍然未知。目标。我们探索了Fermi -lat获得的Cl Blazar OQ 334的光曲线和光谱分布(SED)。方法。通过检查等效宽度(EW)的可变性,我们将MJD 54628-58677时期OQ 334的Fermi -LAT光曲线分类为七个不同的时期,包括频谱无线电Quadim Radio Radio Quasar(FSRQ)状态,过渡状态和Bl bl allal eal spect radio quasar(FSRQ)状态。,我们为每个不同的时代获得了Fermi -Lat Sed和多波长SED。结果。源表现出从静态状态到高度活跃状态的转变,这是由EW的变异所证明的。多波长SEDs显示出突出的外部康普顿特征,尽管Fermi -Lat SED在七个不同的时期都揭示了FSRQ和BL LAC状态。为了获得进一步的见解,我们采用了一个麻风病模型,该模型考虑了源自同步加速器辐射和外部环境的软光子场。通过模拟每个时期的多波长SED,我们发现以下结果。首先,外部光子场的能量密度在七个不同的时代以振荡方式演变。此外,BL LAC状态中外部光子场的能量密度低于FSRQ状态。结论。这些发现表明Cl Blazar代表了大黄花序列中的独特阶段。考虑到外部光子场的能量密度与增生率成正比,我们提出了这些证据表明,通过clazar in clazar in Clastion in Incortions of Blazar,可以观察到以差异为主导的积聚流量(ADAF)光盘(ADAF)碟片(ADAF)和标准Shakura – Shakura – Ssunyaev盘(SSD)。
1。引言以结肠为目标的药物递送提出了一种有前途的策略,可以通过专门为胃肠道下部的药物运送药物来解决与常规口服疗法相关的不良影响[1]。结肠对治疗局部结肠疾病(例如炎症性肠病(IBD)和结直肠癌)特别有益。此外,它是输送引起胃部刺激的药物,受到广泛的首次代谢或在酸性胃环境中降解敏感的理想部位。通常采用诸如pH敏感涂层,时间依赖性系统和微生物群触发的制剂来实现针对结肠的修改释放(MR)曲线。因此,以结肠为目标的制剂具有提高药物稳定性和有效性,减少所需剂量并最小化全身副作用的潜力[2]。然而,一些挑战使靶向结肠的药物输送复杂[1,3]。时间依赖性的输送系统受患者胃肠道(GI)高度可变的影响,受个人生理,疾病状态,饮食和并发药物的影响[4]。在个体和不同疾病状态下(例如IBD)中胃肠道pH的变异性会显着影响pH敏感的系统的有效性[4]。此外,食物摄入和胃排空时间等因素会改变典型的pH梯度,从而导致过早或延迟的药物释放[1,3]。依赖性系统可能会失败[4]。跨个体交付成功的可变性导致了将多个触发机制结合在单个配方中的系统的发展,从而减轻了药物释放失败的风险[2]。但是,开发这些有针对性的配方通常是昂贵且复杂的,需要专门的材料和广泛的测试以确保一致性和稳定性,这可能会限制可访问性,
摘要:许多研究都利用内部或外部触发剂靶向递送药物或其他治疗剂来控制和加速脂质体载体的释放,但利用治疗性X射线的能量作为触发剂的研究相对较少。我们合成了由电离辐射 (RTL) 触发以释放其治疗有效载荷的脂质体。这些脂质体由天然卵磷脂酰乙醇胺 (PE)、1,2-二硬脂酰-sn-甘油-3-磷酸胆碱 (DSPC)、胆固醇和 1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺-N-[甲氧基(聚乙二醇)-2000] (DSPE-PEG-2000) 组成,经纳米粒子跟踪分析 (NTA) 测量,RTL 的平均尺寸在 114 至 133 纳米范围内。触发机制是有机卤素水合氯醛,已知它在暴露于电离辐射时会产生自由质子。一旦质子被释放,脂质体内部 pH 值的下降会促进脂质双层的不稳定以及脂质体内容物的逸出。在原理验证研究中,我们评估了在暴露于低 pH 值细胞外环境或暴露于 X 射线照射时 RTL 辐射释放荧光示踪剂的情况。照射前后的生物分布成像表明脂质体及其货物在局部肿瘤照射部位优先被吸收和释放。最后,将常用化疗伊立替康的强效代谢物 SN-38 与近红外 (NIR) 荧光染料一起装入 RTL 中,用于成像研究和测量单独或与放射暴露相结合的肿瘤细胞毒性,体外和体内。研究发现,与单独的任何一种治疗方式相比,三次静脉注射结合三次 5 Gy 局部肿瘤放射暴露后,满载 RTL 可增加体外放射对肿瘤细胞的杀伤力,并增强体内肿瘤生长延迟。
摘要:在现代时代,对能源的不断提高强调了对开创性创新的需求。本文试图通过转化通过简单的行动进入可持续的电力来源而产生的非常规能源来利用这一必要性。电力发生器瓷砖是一种新颖而生态的友好能量收集系统,旨在利用人类的运动来发电。两个12V DC电动机集成到行走表面下的机械结构中,有效地将机械能从脚步转换为电能。生成的电源存储在紧凑而轻巧的3.7V Lipo电池中,以方便存放。可视化发电过程是通过合并两个LED来促进的,从而提供了发电的真实时间。该便携式解决方案提供了一种从人类运动中收集能量的实用手段,对需要OFF -GRID功率来源的各种应用具有希望。凭借其创新的设计,电力发电机瓷砖是一种可持续的解决方案,可以解决不断增长的全球能源需求,尤其是在传统电源有限或不可用的地区。关键字:人类运动能量收集,电能转换,压力 - 触发机制。1。在我们当代社会中的引言中,能源和权力的不可或缺性比以往任何时候都更加明显。随着全球对能源的需求继续其上升轨迹,众多传统能源的耗尽和浪费构成了重大挑战。2。解决这一问题时,提出范式转向朝着利用人类运动过程中脚力产生的能量的范式转变具有重要优势。这个主张在人口稠密的国家(如印度)中获得了特别的意义,那里的交通流量,铁路站,公共汽车摊位和庙宇始终始终见证人满为患,有数百万的人永久运动。尽管这种动能源固有的巨大潜在潜在的潜力,但目前尚未开发,使其成为变革性发明的主要候选人。电力发生器瓷砖作为开创性的解决方案出现,通过捕获通过人类脚步产生的动能来引入有关可持续能量的新观点。采用了两个12V DC电动机,该技术巧妙地集成了系统,该技术擅长转换在行走中产生的机械能,进入宝贵的电力来源。利用的能量可在轻巧的3.7V Lipo电池中找到房屋,而两个LED的结合提供了视觉上令人信服的真实 - 发电过程的时间显示。这项创新及其可移植性和效率,不仅倡导生态友好的做法,而且还使自己成为可行的网格电源 - 网格电源 - 赋予个人通过简单而日常的步行行为来为能源生产做出贡献。文献综述1)脚步发电机的设计-1] Bhosale P. A.等人。在本文中,作者使用了简单的驱动机制,例如机架和小齿轮组件。他们已经讨论了各种应用程序和进一步的扩展。控制机制带有机架和小齿轮; D. C发电机,电池和LED条以显示输出。发表的论文发表于:2017年6月。