本文件已准备好供公众咨询。它总结了已考虑的证据和观点,并列出了委员会提出的建议。NICE 邀请注册利益相关者、医疗保健专业人士和公众发表评论。本文件应与证据(外部评估报告和外部评估报告附录和勘误表)一起阅读。
近来,研究多种脑部疾病(如自闭症、多发性硬化症 (MS)、痴呆症、阿尔茨海默病 (AD)、神经胶质瘤、精神分裂症和癫痫)病因和机制的研究项目呈指数级增长。近年来,人工智能 (AI) 的实用性已在各种研究领域得到探索,包括现代计算机辅助诊断 (CAD) 系统的开发。在基于 AI 的 CAD 中使用医学影像和医学专家提供的特征示例是一个不断发展的领域,其目标是更准确地提取可靠的诊断线索,最终帮助医生提供更合适和个性化的治疗。例如,对脑 T2 加权磁共振成像 (MRI) 上的白质进行纹理分析有助于诊断 MS。此外,基于 AI 的 CAD 将促进所有可用数据的解释和利用,减轻繁重的手动评估,并使其在日常临床实践中实用。传统的基于机器学习 (ML) 的 CAD 系统采用许多学习技术,这些技术通常是针对特定应用量身定制的,通常需要大量调整,如果在训练数据集之外测试甚至会失败。AI 技术的进步,特别是端到端深度学习,再加上神经成像技术的最新进展(例如,弥散加权 MRI 和其他用于对大脑和神经系统进行成像的模式),为增强传统 ML 方法和应用新的潜在方法来预测或更好地诊断脑部疾病创造了令人兴奋的新机会。本研究课题的重点是最近的基于 AI 的 CAD 系统,用于分析来自患有脑部疾病(如:精神分裂症、痴呆症、阿尔茨海默氏症等)的患者的医学成像数据。本研究课题的目标受众包括工程和医学院教授;工程和应用科学系的研究生和本科生;医学生;在医疗公司工作的工程师;工业、学术界和健康科学家的研究人员;放射科医生等医生;以及包括放射技师和医学物理学家在内的医疗保健专业人员。
摘要 简介 癫痫的诊断通常依赖于神经科医生对脑电图 (EEG) 的视觉解释。癫痫在脑电图上的标志是发作间期癫痫样放电 (IED)。该标记缺乏敏感性:仅在癫痫患者 30 分钟常规脑电图中的一小部分中可捕获到它。在过去的 30 年里,人们对使用计算方法来分析脑电图而不依赖于 IED 的检测的兴趣日益浓厚,但目前尚无一种方法应用于临床实践。我们旨在回顾应用于动态脑电图分析的定量方法的诊断准确性,以指导癫痫的诊断和治疗。方法与分析该方案符合 Cochrane 对诊断测试准确性系统评价的建议。我们将在 MEDLINE、EMBASE、EBM 评论、IEEE Explore 以及灰色文献中搜索 1961 年以后发表的文章、会议论文和会议摘要。我们将纳入观察性研究,这些研究提出了一种计算方法来分析脑电图以诊断成人或儿童癫痫,而不依赖于 IED 或癫痫发作的识别。参考标准是医生对癫痫的诊断。我们将报告每个标记的估计汇总敏感度和特异性以及接收者操作特征曲线下面积 (ROC AUC)。如果可能,我们将对每个单独的标记的敏感度和特异性以及 ROC AUC 进行荟萃分析。我们将使用改进的 QUADAS-2 工具评估偏倚风险。我们还将描述用于信号处理、特征提取和预测建模的算法,并评论不同研究的可重复性。道德与传播 不需要伦理批准。研究结果将通过同行评审的出版物传播,并在与该领域相关的会议上发表。 PROSPERO 注册号码 CRD42022292261。
摘要 计算机辅助药物设计是一种很有前途的方法,可以打破药物发现的枯燥流程。它旨在减少实验工作量并提高成本效益。天然存在的分子量大于 500 道尔顿的大分子,如阳离子肽、环肽、糖肽和脂肽,是成功应用于广谱抗菌、抗癌、抗病毒、抗真菌和抗血栓药物的几种大分子。利用微生物代谢物作为潜在候选药物,通过大规模生产此类分子而不是合成方法,可以提高成本效益。对此类化合物进行计算研究为开发新线索提供了巨大的可能性,但挑战在于使用现有的计算工具来处理这些复杂的分子。机会始于对母体药物分子进行所需的结构修饰。通过分子建模模拟和结构-活性关系模型的识别,在靶位进行虚拟修饰,然后进行分子相互作用研究,以开发出更突出和更有潜力的药物分子。对于大分子而言,通过先导优化研究来开发具有更高特异性和更低脱靶效应的新型化合物在计算上是一个巨大的挑战。预测优化的药代动力学特性有助于开发出比天然化合物毒性更低的化合物。建立化合物库并研究大分子的靶标特异性和 ADMET(吸收、分布、代谢、排泄和毒性)非常费力,并且通过体外方法会产生巨大的成本和化学浪费。因此,需要探索计算方法,从天然大分子中开发具有更高特异性的新型化合物。这篇综述文章重点关注计算机辅助大分子治疗药物发现途径中可能面临的挑战和机遇。关键词:抗真菌剂、环肽、药物发现、糖肽、脂肽本文引用:Yadav M,Eswari JS。计算机辅助脂肽药物发现的机会性挑战:大分子治疗的新见解。Avicenna J Med Bio-tech 2023;15(1):1-13。
抽象的计算机辅助药物设计是击败干燥药物发现的一种有前途的方法。它旨在通过成本效益减少实验性工作。自然发生的大分子具有高于500道尔顿的分子量,例如猫离子肽,环状肽,糖肽和脂肪肽是一些大分子的例子,这些实例是成功应用,这些实例是作为广泛的抗生素,抗癌,抗癌药物,抗病毒,反病毒,抗原和毒药。利用微生物 - 土豆片作为潜在的候选药物,通过大规模生产此类分子而不是合成方法来产生成本效益。对此类化合物的计算研究产生了巨大的可能性,可以使用可用的计算工具来处理这些复杂分子,从而开发新的潜在客户。开发率始于母体药物分子中所需的结构修饰。虚拟修饰,然后通过分子建模模拟和结构活性关系模型的鉴定,然后在目标位点进行分子相互作用研究,以开发出更为突出和潜在的药物分子。铅优化研究以开发具有提高特异性和降低靶向的新型化合物是大分子在计算上是一个巨大的挑战。预测优化的药物特性的预测有助于与天然化合物相比,具有较低毒性的化合物的发展。因此,需要探索来自具有更高特异性的天然大分子的Devel-op新颖化合物。生成针对目标特异性和ADMET(吸收,分布,新陈代谢,排泄和毒性)的化合物和研究库,用于大分子,这是费力的,并且通过无体外方法产生了巨大的成本和化学浪费。这篇评论文章将重点介绍了计算机辅助药物发现大分子疗法的可能挑战和机遇。关键字:抗真菌剂,环状肽,药物发现,糖肽,脂肽引用本文:Yadav M,Eswari JS。脂肽的计算机辅助药物发现的机会主义挑战:大分子疗法的新见解。Avicenna J Med Bio-Tech 2023; 15(1):1-13。
目前,放射科医生面临着过大的工作量,这导致他们高度疲劳,并因此导致不必要的诊断错误。决策支持系统可用于确定优先级并帮助放射科医生做出更快的决策。从这个意义上说,基于医学内容的图像检索系统可以通过提供精心策划的类似示例发挥极大的作用。尽管如此,大多数基于医学内容的图像检索系统都是通过查找最相似的图像来工作的,这并不等同于查找疾病及其严重程度最相似的图像。在这里,我们提出了一种可解释性驱动和注意力驱动的医学图像检索系统。我们在一个大型的公开可用的胸部 X 光片数据集中进行了实验,该数据集带有来自自由文本放射学报告 (MIMIC-CXR-JPG) 的结构化标签。我们在两种常见情况下评估了这些方法:胸腔积液和(潜在)肺炎。作为进行评估的地面实况,查询/测试和目录图像由经验丰富的委员会认证的放射科医生进行分类和排序。为了进行深入而全面的评估,其他放射科医生也提供了他们的排名,这使我们能够推断出评分者之间的差异,并得出定性的表现水平。根据我们的地面实况排名,我们还通过计算归一化的折现累积增益 (nDCG) 对所提出的方法进行了定量评估。我们发现,可解释性引导方法优于其他最先进的方法,并且与最有经验的放射科医生的一致性最好。此外,它的表现在观察到的评分者之间的差异范围内。
摘要:乳腺癌是全球最常见、最致命的癌症类型。鹰嘴豆素A是一种天然异黄酮,具有多种生物学和药理学特性。本研究利用密度函数理论(DFT)的量子化学研究探索鹰嘴豆素A的结构特征,并通过分子对接模拟揭示其抑制乳腺癌的特性。首先使用DFT/B3LYP方法以6-311++(d,p)基组对先导分子进行优化。进行模拟静电势以评估先导分子的反应性,并通过基于能隙、化学势(μ)、电负性(χ)、硬度(η)和软度(S)值的HOMO-LUMO分析评估分子反应性和稳定性。进行Mulliken原子电荷分布以确定分子的反应位点,并进行自然布居分析以计算电子分布。随后通过分子对接研究评估鹰嘴豆素A与乳腺癌靶蛋白的相互作用,并通过药代动力学评价评价先导分子的类药性,结果表明该先导分子没有违反Lipinski规则,对HER-2(PDB ID:2IOK)具有最高的结合亲和力,对接评分为-9.2Kcal/mol。
摘要 近年来,随着软硬件技术、网络技术的发展与普及,多渠道、多内容的教学形式为计算机辅助教学(CAI)发挥日益重要的作用奠定了深厚的社会基础,使CAI逐渐成为现代教学环节中的重要手段。基于此,本文对人工智能影响下的CAI软件设计进行了研究分析。首先分析了CAI的特点,探讨了智能代理技术在CAI中的应用,并引入框架流程图呈现CAI软件的工作流程;其次通过不同的算法介绍CAI软件的智能响应过程。最后通过实验验证了人工智能影响下CAI软件的可行性。可用于实际应用学生的学习。课程内容丰富,功能展示新颖,充分满足学生高效学习的需求。
由SARS-CoV-2引起的2019冠状病毒病(COVID-19)已在全球蔓延,影响了全球人民的生活,阻碍了全球发展。中医药在防治COVID-19中发挥着独特作用。治疗COVID-19的代表方剂连花清瘟和清肺排毒汤能有效缓解COVID-19症状,延缓病情进展,防止病情发生。尽管LHQW和QFPD的治疗效果有很多相似之处,但它们在治疗轻度至中度COVID-19方面的机制和优势仍然不清楚。为了阐明LHQW和QFPD治疗COVID-19的机制,我们采用整合网络药理学和系统生物学方法比较了LHQW和QFPD在人类中的成分、活性化合物及其靶点。LHQW和QFPD分别包含196种和310种活性化合物,其中一些具有相同的靶点。这些靶点富集在与炎症、免疫、凋亡、氧化应激等相关的通路中。然而,这两种中药复方也具有特定的活性化合物和靶点。在LHQW中,牛蒡苷、伞花素和芦荟大黄素靶向神经系统疾病相关基因(GRM1 和 GRM5),而在QFPD中,异岩藻甾醇、黄芩素、川陈皮素、金合欢素 A、表小檗碱和荜茇宁靶向免疫和炎症相关基因(mTOR 和 PLA2G4A)。我们的研究结果表明,LHQW 可能适用于治疗伴有神经系统症状的轻度至中度 COVID-19。此外,QFPD 可以有效调节 SARS-CoV-2 引起的氧化应激损伤和炎症症状。这些结果可为 LHQW 和 QFPD 的临床应用提供参考。
目的:本研究评估了基于人工智能的乳腺超声计算机辅助诊断 (AI-CAD) 如何影响不同工作流程中不同经验水平的放射科医生之间的诊断表现和一致性。方法:纳入了 2017 年 4 月至 2018 年 6 月期间拍摄的 472 名女性的 492 个乳腺病变(200 个恶性肿块和 292 个良性肿块)图像。六名放射科医生(三名经验不足 [<1 年经验] 和三名经验丰富 [10 - 15 年经验])分别在有和没有 AI-CAD 帮助的情况下审查了美国图像,首先按顺序审查,然后同时审查。计算并比较了放射科医生和 AI-CAD 之间的诊断表现和观察者间一致性。结果:实施 AI-CAD 后,无论经验和工作流程如何,特异性、阳性预测值 (PPV) 和准确度均显著提高(P 值均<0.001)。同时读取时,受试者工作特征曲线下的总面积显著增加,但仅限于缺乏经验的放射科医生。使用 AI-CAD 时,乳腺影像报告和数据库系统 (BI-RADS) 描述符的一致性通常会增加(κ =0.29 - 0.63 至 0.35 - 0.73)。与经验丰富的放射科医生相比,缺乏经验的放射科医生更容易接受 AI-CAD 结果,尤其是在同时读取时(P<0.001)。对于经验不足和经验丰富的放射科医生而言,同时读取的最终评估结果从 BI-RADS 2 或 3 变为 BI-RADS 高于 4a 或反之亦然的转换率也显著高于连续读取(总体而言,分别为 15.8% 和 6.2%;P<0.001)。结论:无论经验水平如何,使用 AI-CAD 解释乳腺超声检查均可提高放射科医生的特异性、PPV 和准确性。AI-CAD 在同时读取时可能效果更好,可以提高放射科医生之间的诊断性能和一致性,尤其是对于经验不足的放射科医生而言。