训练集中现有的被称为“新的”。与训练集相比,测试集有两种类型:(1)已知化合物和已知靶标(旨在为已知活性化合物识别更多可能的靶标);(2)新化合物和已知靶标(旨在为新化合物识别靶标)。因此,我们进行了两个级别的验证:成对拆分验证和化合物拆分验证。对于成对拆分验证,训练集和测试集是通过根据分层随机拆分数据集生成的。它衡量我们模型的平均性能,因为测试数据集包含两种类型的对。至于化合物拆分验证,它将化合物分成 10 个部分,因此与这 10 个部分中的 1 个相关的化合物-靶标相互作用被用作测试集,与剩余 9 个部分相关的相互作用保留在训练集中。它
方法:通过电子病历(EMR)收集了出现在四川省人民医院的免疫临床妊娠患者。数据分为训练集,测试集分别为8:2。进行了比较,以评估用于临床应用的传统怀孕风险评估工具的性能。该分析涉及评估临床治疗的成本效益,评估模型的性能并确定其经济价值。数据采样方法,特征筛选和机器学习算法用于开发预测模型。这些模型使用训练集的10倍交叉验证对这些模型进行了验证,并使用boottrapping进行了测试集的外部验证。模型性能由特征曲线(AUC)下的区域评估。基于最佳参数,开发了流产风险的预测模型,并使用Shapley添加剂扩展(SHAP)方法来评估最佳模型特征贡献。
图1 五种机器学习算法在训练集上的预测结果注:SVM:支持向量机算法,CTree:条件推理树算法,Decision_tree:决策树算法,Naive_Bayes:朴素贝叶斯算法,Random_Forest:
给定输入数据(表示为由其特征响应定义的 d 维空间中的点的集合(在此示例中为 2D),通过将整个训练集发送到树中并优化分割节点的参数来优化所选的能量函数,从而训练决策树。
具体来说, Oya 等人 [ 3 ] 总结了 9 种木马特征并对 每种特征赋予特定的分值,通过分值的高低来确定 是否存在硬件木马。但该文并未阐述这些特征的性 质及与硬件木马触发机制的联系。 Yao 等人 [ 4 ] 基于 数据流图提出 4 种硬件木马特征,利用硬件木马特 征匹配算法来检测硬件木马,并形成了检测工具 FASTrust 。然而基于数据流图的木马特征构建方 法是从寄存器层面进行的,大量的组合逻辑被忽略, 误识别率较高。 Hasegawa 等人 [ 5 ] 提出了 LGFi, FFi, FFo, PI, PO 等 5 种硬件木马特征,并利用支持向量 机算法来训练并识别木马节点,然而在训练集中, 硬件木马特征集较少,训练集分布并不平衡,即便 是采用动态加权的支持向量机依然存在较大的误识 别情况。 Chen 等人 [ 6 ] 计算待测电路中两级 AONN 门 的分数,认为分数较高的门是硬件木马。该方法对 单触发型硬件木马有效,然而对于多触发条件的硬 件木马无能为力,且未考虑有效载荷电路及其功能。
Crawford 和 Paglen 的两场展览 TH 和 MF 以及论文 EAI 可被视为对图像分类学的批判,尤其是对给人类照片贴标签的政治含义的警告。最引人注目的是,他们的项目在 ImageNet 数据库中的一些人物类别上推广了怪异和贬低性的标签。然而,C&P 对计算机视觉训练集的分析基础本身就因分类错误而受损。根本问题是 C&P 试图将非常异质的数据集选择归入机器学习“训练集”的单一未分化类别。C&P 展出的数据集在来源、预期用途、版权和知情同意状态、使用条款、资金来源等方面各不相同。下面我将说明区分各种图像数据集的重要性。 C&P 展示的人脸图像数据集有两种不同的来源:由研究小组在受控实验室条件下精心设计和拍摄的数据集,以及从互联网上大量抓取的图像数据集。我分别将它们称为构建数据集和抓取数据集。考虑它们的不同来源如何影响图像的公开展示。当然,这两种图像数据集未经授权公开展示都存在道德问题,但有一个重要区别:构建数据集的版权和知情同意状态是众所周知的,而抓取数据集的版权和知情同意状态则不确定或未知。与抓取的训练集相比,构建图像集(如 JAFFE、FERET、3 和 CK 4)也有明确定义的使用条款。这三个数据集允许用于非商业科学研究,并允许在报告研究结果的学术文章中有限地复制图像。通过在艺术展上公开展示这些图像,C&P 违反了 JAFFE、CK 和 FERET 构建集的使用条款。艺术家和普拉达基金会声称,他们的使用确实构成了“非商业科学
目标:超声心动图(ECG)是用于诊断心力衰竭(HF)的最常见方法。但是,其准确性取决于操作员的经验。此外,数据的视频格式使患者将他们引用和重新检查的挑战。因此,本研究使用了一种深度学习方法来帮助医生评估心脏功能,以促进超声心动图发现的标准化以及动态和静态超声数据的兼容性。Methods: A deep spatio-temporal convolutional model r2plus1d-Pan (trained on dynamic data and applied to static data) was improved and trained using the idea of “regression training combined with classification application,” which can be generalized to dynamic ECG and static cardiac ultrasound views to identify HF with a reduced ejection fraction (EF < 40%).此外,还建立了三个独立数据集,其中包含8976个心脏超声视图和10085心脏超声视频。随后,标记了EF的跨国多中心数据集。此外,还进行了模型培训和独立验证。最后,在三家专门从事心血管疾病的区域医院的注册超声波检查员和心脏病专家招募了不同的工作年度,以比较结果。结果:拟议的深时时空卷积模型在接收器操作特征曲线(AUC)值下达到了0.95(95%置信区间[CI]:0.947至0.953),在动态超声数据的训练集上,AUC的训练集和1(95%CI,1至1至1)的训练集在独立效力集上。结论:随后,该模型被应用于静态心脏超声视图(验证集),同时输入相同心脏的1、2、4和8图像,分别分类的精度分别为85%,81%,93%和92%。在静态数据上,人工智能(AI)模型的分类准确性与超过3个工作年度的超声检查员和心脏病专家的最佳性能相当(p = 0.344),但明显优于中位数水平(p = 0.0000008)。
训练:给定一组标记的示例{((x 1,y 1),…,(x n,y n)},通过最大程度地限制训练集测试的预测误差来估算预测函数f:将f应用于从未见过的f之前,将f应用于前所未有的测试示例x并输出预测的值y = f(x)
案例 A:诊断人工智能中的性别偏见 在不同子群上训练算法可以揭示分类不平衡。最近的一篇论文 (4) 研究了训练集不平衡对基于图像的计算机辅助诊断的影响。作者使用最先进的分类器,使用性别平衡分别为 0/100%、25/75%、50/50%、75/25% 和 100/0% 的女性/男性的训练集,研究了基于胸部 X 光的 12 种不同胸部疾病的诊断。正如预期的那样,当诊断人工智能专门用于诊断女性时,它在女性身上的表现更好,反之亦然。然而,对于某些疾病(例如气胸),专门用于诊断女性的诊断人工智能实际上在诊断男性方面比诊断女性方面要好。将训练集中的部分女性替换为男性会强调这种差异,但事实仍然存在:对女性表现最好的算法在诊断男性方面比对女性表现更好。同时,这是对男性表现最差的算法。