这些讲义是我在 2011 年 2 月至 5 月在阿姆斯特丹大学上“量子计算”课程时分小部分形成的,之后汇编成一篇教材。每章都包含在 2 × 45 分钟的讲座中,另外还有 45 分钟的讲座用于练习和家庭作业。课程的前半部分(第 1-7 章)涵盖量子算法,后半部分涵盖量子复杂性(第 8-9 章)、涉及 Alice 和 Bob 的内容(第 10-13 章)和错误校正(第 14 章)。第 15 讲关于物理实现和总体展望的内容比较粗略,我没有为其撰写讲义。这些章节也可以从理论计算机科学家的角度作为对量子计算和信息领域的一般介绍来阅读。虽然我尽力使文本自成体系且前后一致,但它可能仍然有些粗糙;我希望继续对其进行润色和补充。评论和建设性批评非常受欢迎,可以发送到 rdewolf@cwi.nl。如果想了解更多(更多……):有关一般领域,请参阅 Nielsen 和 Chuang 的书[ 196 ],有关量子信息理论,请参阅 John Watrous 的书[ 247 ],以及有关理论物理学视角,请参阅 John Preskill 的讲义[ 200 ]。
电磁场(3-0-0) 先决条件:1. 数学-I 2. 数学-II 课程成果 课程结束时,学生将展示以下能力:1. 理解电磁学的基本定律。2. 在静态条件下获得简单配置的电场和磁场。3. 分析时变电场和磁场。4. 理解不同形式和不同介质中的麦克斯韦方程。5. 了解电磁波的传播。模块 1:(08 小时)坐标系与变换:笛卡尔坐标、圆柱坐标、球坐标。矢量微积分:微分长度、面积和体积、线、表面和体积积分、Del 算子、标量的梯度、矢量散度与散度定理、矢量旋度与斯托克斯定理、标量的拉普拉斯算子。模块 2:(10 小时)静电场:库仑定律、电场强度、点电荷、线电荷、表面电荷和体积电荷产生的电场、电通量密度、高斯定律 - 麦克斯韦方程、高斯定律的应用、电势、E 和 V 之间的关系 - 麦克斯韦方程和电偶极子与通量线、静电场中的能量密度、电流和电流密度、点形式的欧姆定律、电流的连续性、边界条件。静电边界值问题:泊松和拉普拉斯方程、唯一性定理、求解泊松和拉普拉斯方程的一般程序、电容。模块 3:(06 小时)磁静场:磁场强度、毕奥-萨伐尔定律、安培电路定律-麦克斯韦方程、安培定律的应用、磁通密度-麦克斯韦方程。麦克斯韦静场方程、磁标量和矢量势。磁边界条件。模块 4:(10 小时)电磁场和波传播:法拉第定律、变压器和运动电磁力、位移电流、最终形式的麦克斯韦方程、时谐场。电磁波传播:有损电介质中的波传播、无损电介质中的平面波、自由空间、良导体功率和坡印廷矢量。教科书:
13 讲座 13:经典密码学和量子密码学 57 13.1 经典密码学主题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ................................................................................................................................................................... 62 13.4.1 BB84 协议 ....................................................................................................................................................................... 62
1 量子比特 9 1.1 比特和量子比特. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
● 业务问题框架:在此步骤中,我们基本上会找出我们试图解决的业务问题,例如,当我们试图找出供应链效率不高的原因或我们销售量下降的原因时。当利益相关者意识到业务的任何部分效率低下时,通常会与他们进行这种讨论。 ● 分析问题框架:一旦我们有了问题陈述,我们接下来需要考虑的是如何针对该业务分析问题进行分析。在这里,我们寻找需要分析的指标和具体点。 ● 数据:一旦我们根据需要分析的内容确定了问题,接下来我们需要的就是需要分析的数据。在此步骤中,我们不仅从各种数据源获取数据,而且还清理数据;如果原始数据已损坏或具有错误值,我们会消除这些问题并将数据转换为可用形式。 ● 方法选择和模型构建:一旦数据准备好,棘手的部分就开始了。在此阶段,我们需要确定必须使用哪些方法以及哪些指标是关键的。如果需要,团队必须构建自定义模型,以找出适合各自操作的特定方法。很多时候,我们拥有的数据类型也决定了可用于进行业务分析的方法。大多数组织会制作多个模型,并根据确定的关键指标进行比较。● 部署:在选择模型和分析解决方案数据的统计方法后,我们需要做的下一件事是在实时场景中测试解决方案。为此,我们在数据上部署模型并寻找不同类型的见解。根据指标和数据亮点,我们需要决定解决问题的最佳策略并有效实施解决方案。即使在业务分析的这个阶段,我们也会将预期输出与实时输出进行比较。稍后,基于此,我们将决定是否需要重申和修改解决方案,或者是否可以继续实施解决方案。
1958 年,集成电路的发明带来了电子技术的革命,开启了微电子时代。集成电路定义了第三代计算机。 微电子:微电子的字面意思是“小型电子器件”。自从数字电子器件和计算机行业诞生以来,数字电子电路的尺寸一直呈持续减小的趋势。 IBM SYSTEM/360 到 1964 年,IBM 凭借其 7000 系列机器牢牢控制了计算机市场。同年,IBM 发布了新的计算机产品系列 System/360。 DEC PDP-8 IBM 推出第一台 System/360 的同一年,又推出了另一款具有里程碑意义的首批产品:数字设备公司 (DEC) 的 PDP-8。在当时,普通计算机需要空调房,而 PDP-8(业界将其称为微型计算机,源于当时的迷你裙)足够小,可以放在实验台上或内置到其他设备中。它无法完成大型机的所有功能,但售价 16,000 美元,对于每个实验室技术人员来说都足够便宜。相比之下,几个月前推出的 System/360 系列大型机售价高达数十万美元。
解剖学讲义 第 3 节:神经系统 中枢神经系统:大脑和脊髓 神经系统在解剖学和功能上分为两部分,中枢神经系统(大脑和脊髓)和周围神经系统(神经节、12 对脑神经和 31 对脊神经)。周围神经系统 (PNS) 可进一步划分为躯体神经系统 (SNS)(整合对骨骼肌的控制)和自主神经系统 (ANS)(大部分情况下自动调节重要的内脏器官和系统)。大脑 在解剖学上,我们可以根据信息处理的方式将大脑分为六 (6) 个部分: 1. 大脑 2. 间脑 3. 中脑 4. 小脑 5. 脑桥 6. 延髓 右侧是大脑的中矢状切面,显示了人脑的各个区域和六个主要部分(红色圆圈数字),从信息处理的最高级别到最低级别。 1. 大脑 大脑是人脑中最大、最发达的区域(见上文),被认为是最高功能的中心。其主要功能包括: 对感官知觉的意识;对运动的自主控制(调节骨骼肌运动);语言;性格特征;复杂的心理活动,如思考、记忆、决策、预测能力、创造力和自我意识。大脑由 5 个脑叶组成,以下是有关它们的一些基本信息:额叶 - 位于额骨内,是 5 个脑叶中最大、最复杂的脑叶,与人类的高级智力功能和行为方面有关。初级运动皮层控制身体骨骼肌的运动。顶叶 - 受颅骨顶骨保护,该脑叶主要负责解释和整合身体感觉输入。体感皮层与触觉、振动、温度和一般身体感觉的接收和感知有关。还涉及空间定向、运动协调、阅读、写作和数学计算。
2 相对论性点粒子 2.1 2.1 非相对论性作用..................................................................................................................................................................2.1 2.2 世界线作用..................................................................................................................................................................................................2.2 2.3 多项式作用..................................................................................................................................................................................................2.3 2.4 各种规范.................................................................................................................................................................................. . ... .2.6
著名理论物理学家理查德费曼说过,量子力学的一切都可以用双缝实验来概括。在双缝实验中,你向带有两个窄缝的墙壁逐个发射光子。每个光子落在第二面墙上的哪个位置是概率性的。如果我们绘制光子在后墙上出现的位置,有些地方很有可能,有些则不然。在图 2.1 – 2.3 中,你可以看到显示基本实验设置以及使用光子进行单缝和双缝实验的结果的图表。请注意,屏幕上有些地方可能出现而有些地方不太可能出现,这本身并不是奇怪的部分:我们完全可以用某种理论来解释这一点,在这种理论中,每个光子都具有一些我们不知道的额外自由度(“RFID 标签”),这决定了它去往哪个方向。奇怪的是,对于第二面墙上的某个间隔:
1. 简介 . ... . ... 25 1.8 电子和通信 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...