随着中国邮轮旅游业的发展,有必要研究邮轮的设计和建设,尤其是中央中庭,这是公共区域设计的重要组成部分,代表了整艘船设计的质量和特征。,与欧洲相比,中国的大规模邮轮设计基金会仍然缺乏。因此,研究中央中庭的空间布局特征对于改善中国邮轮业具有重要意义。本文重点介绍了巡航船中部中庭集成空间布局的设计原理和特征。通过使用建筑,造船工程,美学,国际海事安全惯例和技术的基本理论,通过数据收集和研究方法(包括数学统计学方法论,聚类方法和案例研究方法研究方法)分析25种典型的家庭和外国巡洋舰品牌的代表性中心室。通过对案件的比较和概括,该研究最终总结了六个总体原则和四个结构性原则,用于在邮轮中部中庭设计综合空间。六个总体原则包括安全,理性,适用性,艺术性,协调和技术经济学。四个结构原理包括清晰的空间循环,自然空间连接,主题协调和统一以及突出的关键水平。这项研究提供了在邮轮中部中庭设计综合空间的见解,希望可以将其应用于改善中国的巡航设计工作,同时还支持对未来相关领域的指导。
我们开发了一种一般理论,以优化顺序学习概率的频繁遗憾,其中有效的强盗和强化学习算法可以从统一的贝叶斯原理中得出。我们提出了一种新颖的优化方法,以在每一轮中产生“算法信念”,并使用贝叶斯后代做出决定。创建“算法信念”的优化目标,我们称其为“算法信息比”,代表了一种有效地表征任何算法的频繁遗憾的Intrinsic复杂性度量。据我们所知,这是以通用且最佳的方式使贝叶斯型算法保持不含和适用于对抗设置的第一种系统性方法。此外,算法很简单且通常可以实现。作为一种主要应用,我们为多臂匪徒提供了一种新颖的算法,该算法在随机,对抗性和非平稳环境中实现了“最佳世界”的表现。我们说明了这些原理如何在线性匪徒,强盗凸优化和增强学习中使用。
Klaus Bengler,慕尼黑技术大学Werner Damm,德国Ossietzky University Oldenburg的Carl,DLR,德国Andreas Luedtke,DLR-未来移动性系统工程研究所,Oldenburg Reiger Jochem,Ossietzky Oldenburg Benedikt,DLR,DLR - DLR - dlr -Institute future Mosmitility- Bianca Biebl,慕尼黑马丁·弗里布尔(Mumich MartinFränzle)莱恩·福雷斯特(Laine Forrest),范德比尔特大学塞巴斯蒂安·莱恩霍夫(Sebastian Lehnhoff),奥塞兹基大学奥尔登堡的卡尔·亚历山大·普特茨纳(Alexander Pretschner),慕尼黑大学阿斯特里德·拉科夫(Astrid Rakow),奥斯蒂兹基大学奥尔登堡·丹尼尔·桑塔格(Ossietzky University)的卡尔·奥斯顿堡·桑塔(Carl) Janos Sztipano VI TS,范德比尔特大学Maike Schwammberger,Mark Schweda和Anirudh Unni,来自Ossietzky University Oldenburg Eric Veith的Carl,Offis e。 V.,OldenburgKlaus Bengler,慕尼黑技术大学Werner Damm,德国Ossietzky University Oldenburg的Carl,DLR,德国Andreas Luedtke,DLR-未来移动性系统工程研究所,Oldenburg Reiger Jochem,Ossietzky Oldenburg Benedikt,DLR,DLR - DLR - dlr -Institute future Mosmitility- Bianca Biebl,慕尼黑马丁·弗里布尔(Mumich MartinFränzle)莱恩·福雷斯特(Laine Forrest),范德比尔特大学塞巴斯蒂安·莱恩霍夫(Sebastian Lehnhoff),奥塞兹基大学奥尔登堡的卡尔·亚历山大·普特茨纳(Alexander Pretschner),慕尼黑大学阿斯特里德·拉科夫(Astrid Rakow),奥斯蒂兹基大学奥尔登堡·丹尼尔·桑塔格(Ossietzky University)的卡尔·奥斯顿堡·桑塔(Carl)Janos Sztipano VI TS,范德比尔特大学Maike Schwammberger,Mark Schweda和Anirudh Unni,来自Ossietzky University Oldenburg Eric Veith的Carl,Offis e。 V.,Oldenburg
在过去的十年中,随着固态电池的开发,该领域已经出现了许多有希望的结果,这表明它可以成为下一代移动储能的范式移动解决方案,具有超越商业锂离子电池超越商业锂离子电池的突破性。本文试图解释在固态电池中主导界面反应的独特基本机制。在很大程度上限制了场地早期电池性能的界面反应,而是成为解锁许多突破性表演的设计机会。本文将着重于解释有关电化学接口反应如何与机械和运输特性结合的基本原理,以决定电池性能,尤其是通过动态电压稳定性,为高级电池性能设计电解质和接口涂料材料的机会。
生物多样性,保护和景点系17 Dick Perry Avenue Technology Park,Western Kensington WA 6151电话:(08)9219 9000网站:DBCA.WA.GOV.AU©西澳大利亚州西澳大利亚州2023年2023年推荐引用:生物多样性,保护和景点(20233)。设计原理指导西澳大利亚的海洋公园网络。西澳大利亚州珀斯的生物多样性,保护和景点系。盖上顶部的图像:Rowley Shoals Marine Park(Suzanne Long/dbca);游骑兵测量一只少年绿海龟(Michael Hourn/DBCA);商业捕鱼(DPIRD);南部右鲸母亲和小牛(由Dave和Fiona Harvey提供)。页脚从左开始:Ningaloo Marine Park的软珊瑚(WA提供的旅游);休闲钓鱼(Carolyn Thomson-Dans/DBCA);原住民岩石雕刻反映了Dampier群岛(Amy Stevens/Murujuga原住民公司)的海洋价值。
作为中性数据中介,MDS通过使所有参与者遵守标准化认证过程来确保数据源的出处和真实性。参与者随后都会收到自己的令牌,该令牌被分配给自己的连接器,以确保他们使用认证的连接器。从技术上讲,连接器确保数据捆绑包从已陈述的认证源移动到数据收件人的连接器。连接器之间的数据共享是防操作的。没有第三方可以访问,转移或操纵传输的数据。
抽象锂(LI)电池是电动汽车和便携式电子设备的电源市场中的主要参与者。电解质对于确定LI电池的性能至关重要。传统电解质落后于对快速充电,广泛的操作和LI电池安全性的不断增长的需求。尽管(局部)高浓度电解质取得了巨大的成功,但它们仍然患有缺点,例如低离子电导率和高成本。弱溶性电解质(WSE),也称为低溶解电解质,为这些挑战提供了另一种解决方案,并且近年来吸引了密集的研究兴趣。这项贡献回顾了WSES开发的工作机制,设计原理和最新进展。还提供了有关该领域未来研究指导的摘要和观点。洞察力将使学术和工业社区在设计安全和高性能的下一代LI电池中受益。
终身学习 - 代理在其一生中学习的能力 - 是生物学习系统的标志,也是人工智力(AI)的核心挑战。终身学习算法的开发可能会导致一系列新型的AI应用程序,但这也需要开发适当的硬件加速器,尤其是如果要在具有严格尺寸,重量和功率约束的边缘平台上部署这些模型。在这里,我们探索了终身学习AI加速器的设计,这些加速器旨在在不受束缚的环境中部署。我们确定了终身学习加速器的关键理想功能,并突出显示了评估此类加速器的指标。然后,我们讨论当前的Edge AI加速器,并探索终身学习加速器的未来设计,考虑到不同的新兴技术可以扮演的角色。
,除非探索非传统计算体系结构和创新的存储解决方案,否则计算和数据存储的能源需求将继续呈指数增长。低能计算,包括内存架构,具有解决这些能力和环境挑战的潜力,尤其是四面体(Wurtzite-type)铁电挑战是绩效和与现有半导体过程集成的有希望的选择。Al 1-X sc X n合金是表现为铁电转换的少数四面体材料之一,但是切换极化所需的电场,即,强制性场E C在MV/CM的顺序上,该顺序是MV/CM的顺序,该顺序比传统的传统氧化物氧化物蛋白酶蛋白酶蛋白酶高度高约1-2个数量级。我们不是进一步的工程AL 1 -x SC X N和相关的合金,而是探索计算识别的替代途径,其开关屏障的新材料低于ALN,但仍具有足够高的内在分解场。超越了二进制化合物,我们探索了具有Wurtzite型结构的多元化合物的搜索空间。通过这次大规模搜索,我们确定了四个有希望的三元氮化物和氧化物,包括Mg 2 Pn 3,Mgsin 2,Li 2 Sio 3和Li 2 Geo 3,以实现实验实现和工程。在> 90%的被考虑的多元材料中,我们确定了独特的开关途径和非极性结构,这些结构与基于ALN的Maverials中通常假定的开关机制不同。我们的结果反驳了现有的设计原理,基于降低Wurtzite C/A晶格参数比率,同时支持两个新兴设计原理 - 离子性和键强度。