脑电反馈是一种基于脑电图技术的无创脑刺激方法,通过脑机接口将脑电生理活动信号传送到计算机,将脑电活动的实时变化作为反馈刺激给予被试自身,帮助被试学习如何自我调节大脑活动。脑电反馈应用十分广泛,可作为精神疾病的辅助治疗、健康个体的认知能力提高以及作为脑电生理特征与认知功能相互作用的实验条件。为了对脑电反馈有一个清晰的认识,本文从脑电反馈系统的组成部分、脑电反馈方案的设计要素、脑电反馈的评价以及脑电反馈的机制理论四个部分对其进行了综述。
神经反馈 (NFB) 是一种操作性条件反射程序,通过该程序,个体可以学会自我调节大脑的电活动。NFB 最初是作为治疗潜在脑电图功能障碍的疾病的干预措施而开发的,现在也被用作一种训练工具,以增强高性能情况下所需的特定认知状态。NFB 训练效果背后的最初想法是,变化应该仅限于训练过的脑电图频率。不用作反馈频率的脑电图频率应该是独立的,不受神经反馈训练的影响。尽管感觉运动节律 NFB 训练在认知表现增强方面取得了成功,但目前尚不清楚所有参与者是否都可以有意修改特定选择的脑电图 (EEG) 频率的功率密度。在本研究中,参与者被随机分配到控制心率变异性 (HRV) 生物反馈 (HRV) 训练组或 HRV 生物反馈和神经反馈 (HRV/NFB) 训练组。这项随机混合设计实验包括两节入门理论课和为期 6 周的训练期。我们研究了两个实验组在训练期间和训练期间不同脑电图频带的变化。所有参与者在训练期间和训练期间都表现出脑电图变化。然而,在 HRV/NFB 训练组中,未训练的脑电图频率发生了显著变化,而一些训练过的频率则不同。此外,HRV 组和 HRV/NFB 组的脑电图活动都发生了变化。因此,脑电图变化不仅限于训练过的频带或训练方式。
2 天前 — 我告诉他,Code 1500 的任何人都不会在首次海试中驾驶这艘船。抄送:罗克韦尔。1963 年 4 月 11 日。1500 分配。里科弗 (pk)。
计算机是社会行为者(CASA)范式越来越多地被用作解释用户对聊天机器人、语音助手和社交机器人等新兴技术的社会反应的主要理论框架。但CASA范式的核心解释机制仍存在争议。在过去的研究中,出现了不同的发现来支持无意识解释和正念解释。因此,为了更好地理解哪种机制具有更强的解释力,本研究分析了834名被试的反应,采用了一种结合实验设计与经典多维尺度分析的新方法。通过调查被试在唤起社会存在感和感知信任度方面的技术认知图差异,结果表明,与正念相比,无意识在解释用户对技术的社会反应方面具有更强的解释力。研究结果可以作为CASA范式解释机制的重要证据,具有方法论贡献和实际意义。
我们在一系列儿童与照顾者之间英语互动的纵向语料库上训练了一个计算模型(基于块的学习器,CBL),以测试一种拟议的统计学习机制——后向转换概率——是否能够稳定准确地预测儿童在成长最初几年的言语表达。我们预测,随着儿童年龄的增长,该模型重建儿童言语表达的准确性会降低,因为儿童逐渐开始使用抽象形式而不是来自其言语环境中的特定“块”来生成言语。为了验证这个想法,我们在一系列纵向儿童语言语料库中最近遇到的和累积的言语输入上训练了该模型。然后我们评估了该模型是否能够准确地重建儿童的言语。控制话语长度和重复块的存在后,我们没有发现任何证据表明 CBL 重建儿童言语表达的能力会随着年龄的增长而降低。
