在快速发展的人工智能 (AI) 领域,优化系统性能和可靠性对于满足复杂计算工作负载的需求至关重要。随着 AI 应用变得越来越复杂,高性能处理器的热管理变得越来越具有挑战性。在本应用说明中,我们探讨了热界面材料 (TIM) 1.5 在 AI 系统的性能和可靠性中发挥的作用。通过有效管理散热,TIM 1.5 可确保最佳工作温度,降低热诱发故障的风险并延长系统寿命。作为先进材料供应商,霍尼韦尔 50 多年来一直满足电子设备制造商的应用要求,并继续为多个行业的热管理提供重要材料。
制定白皮书和测试计划,用于定义 PIC 技术 (TID、DD、SEE) 中潜在的辐射诱发故障机制 完成 Freedom Photonics PIC TID 和 DD 测试 (使用 50 MeV 质子进行高通量测试) 与 Georgia Tech 合作完成集成硅波导重离子测试。计划测试 GT SiN 波导和分立硅光子器件 (MZM) 计划在商用分立和集成光子器件 (UCSB、NeoPhotonics 等) 调查中进行额外的 TID 和 DD 质子测试 使用 Lumerical 物理建模和贝叶斯分析来分析 PIC 辐射数据的趋势。
摘要 — 基于 SRAM 的现场可编程门阵列 (FP-GA) 已在航空航天应用中使用了十多年。遗憾的是,这些设备的一个显著缺点是它们对辐射效应的敏感性,这会导致存储器元件中的位翻转和半导体中的电离诱发故障,通常称为单粒子翻转 (SEU)。对基于 SRAM FPGA 的安全关键应用进行早期可靠性分析将使设计人员能够开发出符合设计要求(例如 DO-254 标准)的更可靠、更强大的设计。我们提出了一种基于概率模型检查的方法来分析此类设计的可靠性和可执行性,以指导设计决策。概率模型检查是一种众所周知的形式验证技术,其主要优点是分析详尽,从而可以对时间逻辑查询给出数值精确的答案,这与离散事件模拟形成鲜明对比。在所提出的方法中,从系统的高级描述开始,从提取的控制数据流图 (CDFG) 构建马尔可夫 (奖励) 模型。然后使用 PRISM 模型检查器工具自动验证各种可靠性和可执行性相关属性。
安全集成电路旨在保护敏感信息的机密性和完整性,防止遭受逻辑和物理攻击。故障注入攻击指的是主动操纵芯片内部结构,从而在某些过程执行期间导致故障。这种技术及其不同变体已被证明非常强大 [4]。最广为人知的引发此类故障的技术是激光故障注入 (LFI)[14],[15]、电磁故障注入 (EM-FI)[13],[7]、体偏置注入 (BBI)[12] 和电压或时钟毛刺 [3]。针对此类攻击最常见的硬件物理对策是被动和主动屏蔽,以保护芯片免遭物理访问和操纵,以及各种传感器来检测温度、电压、光线或时钟频率方面的异常。如今,安全芯片设计中已经实施了针对故障攻击的有效对策,这使得 EM-FI、BBI 尤其是 LFI 成为在现代安全 IC 中诱发故障的主要技术。LFI 被认为是获得最精确结果的技术。另一方面,它成本最高,并且需要接触硅表面才能成功注入光。事实证明,正面和背面都可以使用该技术。然而,由于实施了特定的物理对策或金属电路本身可能会阻挡光线,因此芯片的正面更难受到攻击。因此,绝大多数激光 FI 攻击都是通过芯片的背面进行的。
关键词:AlGaN、ALT、HEMT、高功率 RF 放大器、GaN、MTTF、可靠性、100V 摘要 据报道,在 100V 下工作的 RF GaN-SiC HEMT 在 200°C 通道温度下的中位故障时间 (MTTF) 为 1000 万小时。数据是从 300°C、315°C 和 330°C 三个温度下的加速寿命测试 (ALT) 推断出来的。为了捕获显著的统计变化,从来自不同批次的两个晶圆中挑选出每个温度的 10 个 ALT 代表性样本。故障设定为饱和漏源电流 (I DSS ) 下降 20%。在 100 V 下表征的 AlGaN/GaN on SiC HEMT 技术基于带背通孔的 0.5 m GaN 工艺。引言 最近有报道称,通过将工作电压提高到超过标准 50 V,可实现突破性的 2.3 kW UHF 单射频晶体管放大器 [1]。此外,用于 L 波段应用的 5 kW 单射频 GaN 晶体管将在 IMS-2022 [2] 上展示。在单个射频 GaN 晶体管放大器中实现数千瓦功率级将是促进兆瓦级射频系统中 TWTA 或其他真空电子器件替换的重要里程碑。为了实现这一技术转变,需要一种能够在 100 - 150 V 偏压下可靠工作的新型射频 GaN 晶体管。在更高电压下工作射频 GaN HEMT 的几个优点是:更高的功率密度、更高的效率、更高的阻抗和更宽的带宽;本文首次讨论高压射频 GaN HEMT 的可靠性。每当一种新的半导体技术被开发并推向市场时,人们就会明显担心其可靠性。在过去的 70 年中,人们开发了一套严格的测试来估计任何半导体技术在其预期工作条件和环境下的寿命 [3 – 4]。良好可靠性的普遍接受的指标是,在 200°C 的通道 (FET) 或结 (BJT) 工作温度下,现场寿命为 1000 万小时。为估计或推断这种寿命而开发的表征技术是通过加速寿命测试,其中半导体器件池在高温下运行以故意诱发故障,并测量每个池中 50% 的样品失效所需的时间。ALT