致谢 ............................................................................................................................. 67
摘要:经颅磁刺激 (TMS) 通过电磁感应刺激大脑。其结果取决于多种刺激参数,例如感应电场模式(特别是峰值场的位置及其方向)、强度和时间。然而,尚不清楚 TMS 诱发的反应如何受到所有刺激参数的影响。本研究阐明了 TMS 诱发的脑电图 (EEG) 反应对刺激电场方向的依赖性。为此,我们分析了来自六名受试者的数据集,这些受试者被给予了 36 个刺激方向的脉冲,这些刺激方向指向前辅助运动区 (pre-SMA)。使用基于聚类的统计数据分析了 TMS 诱发电位 (TEP) 和诱发振荡。进行了源估计以评估刺激方向对 TMS 诱发信号传播的影响。早期峰值的幅度(TMS 脉冲后 20 和 40 毫秒)在很大程度上取决于电场方向。我们的分析表明,大多数受试者在刺激后长达 100 毫秒内都存在方向依赖性,这表明刺激效果会发生变化,并且刺激部位的信号传播也可能会发生变化。这些结果表明,不同的方向可能会扰乱不同的网络。因此,方向是刺激结果的关键参数,应根据所研究的皮质网络进行调整。
这项工作旨在评估使用脑电图 (EEG) 信号作为生物特征认证手段的效果。我们从 20 名参与数据收集的受试者那里收集了超过 240 条记录,每条记录持续 2 分钟。数据包括在静息状态和有听觉刺激的情况下进行的实验的结果。静息状态的 EEG 信号是在睁眼和闭眼的情况下获取的。听觉刺激 EEG 信号由分为两种场景的六个实验组成。第一种场景考虑耳内刺激,而第二种场景考虑骨传导刺激。对于这两种场景中的每一种,实验都包括一首母语歌曲、一首非母语歌曲和一些中性音乐。这些数据可用于开发用于认证或识别的生物特征系统。此外,它们还可用于研究音乐等听觉刺激对 EEG 活动的影响,并将其与静息状态条件进行比较。 © 2024 作者。由 Elsevier Inc. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)
摘要 —脑电图 (EEG) 因其便携性、高时间分辨率、易于使用和低成本而被广泛应用于脑机接口 (BCI),使瘫痪者能够直接与外部设备通信和控制外部设备。在各种 EEG 范式中,基于稳态视觉诱发电位 (SSVEP) 的 BCI 系统使用以不同频率闪烁的多个视觉刺激(例如计算机屏幕上的 LED 或盒子)由于其快速的通信速率和高信噪比在过去几十年中得到了广泛的探索。在本文中,我们回顾了基于 SSVEP 的 BCI 的当前研究,重点关注能够连续、准确检测 SSVEP 并因此实现高信息传输速率的数据分析。本文描述了主要的技术挑战,包括信号预处理、频谱分析、信号分解、空间滤波特别是典型相关分析及其变体和分类技术。还讨论了自发性大脑活动、心理疲劳、迁移学习以及混合 BCI 方面的研究挑战和机遇。
视觉诱发电位测试 (VEP) 通过测量从视神经到视觉皮层的视觉通路传导来检查从视网膜到大脑枕叶皮层的视觉通路的功能。VEP 是由视觉刺激(例如计算机屏幕上交替的棋盘格图案)引起的反应。反应由放置在头上的电极记录下来,并在计算机上以图形形式观察。这些反应通常源自枕叶皮层(靠近头部后部),这是大脑中负责接收和解释来自眼睛的视觉信号的区域。VEP 测试测量视觉刺激从眼睛传播到大脑枕叶皮层所需的时间。它可以显示神经通路是否存在任何异常。
关于您的 VEP 测试 视觉诱发电位 (VEP) 是一种用于查找影响视力的大脑问题的测试。它使用仪器记录与构成视觉通路的神经相关的大脑活动。测试包括用糊剂将少量电极贴到您的头上。您将被要求观看电视屏幕或闪光灯。每只眼睛将分别接受测试。这大约需要 45 分钟。 为您的预约做准备 务必确保您的头发干净且没有使用护发产品。如果您可以在测试前一天晚上洗头,那将会很有帮助,并且您可能需要在回家后再次洗头。 携带物品 如果您戴眼镜,请随身携带。
听觉诱发电位 (AEP) 方法通常用于研究海洋哺乳动物的听力能力,并扩大了圈养和搁浅动物的可用听力图数据。AEP 将继续成为增加听力图样本量的主要方法,因为它们比行为听力阈值方法更容易实施,并且可以用于未经训练或搁浅的动物。然而,由于 AEP 阈值的频率依赖性高于行为听力阈值,AEP 目前仅用于定义物种的听力上限频率。因此,海军目前仅使用行为听力阈值来评估绝对听力灵敏度。研究和解释这两种方法的差异的能力可能使 AEP 听力图能够进行调整,并与从行为听力图方法获得的听力图进行比较。海军将受益于一种标准化的方法,通过这种方法可以调整 AEP 听力阈值并将其与行为阈值进行比较。这将使更多的 AEP 听力图可用于加权函数开发和其他海军环境合规工作,扩大 AEP 结果在未来标准制定中的应用。
脑机接口 (BCI) 是一种使用脑电图 (EEG) 信号控制外部设备(例如功能性电刺激 (FES))的技术。基于 P300 和稳态视觉诱发电位 (SSVEP) 的视觉 BCI 范例已显示出巨大的临床用途潜力。已经发表了许多关于基于 P300 和 SSVEP 的非侵入式 BCI 的研究,但其中许多研究存在两个缺点:(1) 它们不适用于运动康复应用,(2) 它们没有详细报告用于分类的人工智能 (AI) 方法或其性能指标。为了弥补这一差距,本文采用 PRISMA(系统评价和荟萃分析的首选报告项目)方法来准备系统文献综述 (SLR)。重复或与运动康复应用无关的 10 年以上的论文被排除在外。在所有研究中,51.02% 涉及分类算法的理论分析。在剩余的研究中,28.48% 用于拼写,12.73% 用于各种应用(轮椅或家用电器的控制),只有 7.77% 专注于运动康复。在应用纳入和排除标准并进行质量筛选后,共选出 34 篇文章。其中,26.47% 使用 P300,55.8% 使用 SSVEP 信号。建立了五个应用类别:康复系统(17.64%)、虚拟现实环境(23.52%)、FES(17.64%)、矫形器(29.41%)和假肢(11.76%)。在所有作品中,只有四篇对患者进行了测试。报告的用于分类的机器学习 (ML) 算法中,最常用的是线性判别分析 (LDA) (48.64%) 和支持向量机 (16.21%),而只有一项研究使用了深度学习算法:卷积神经网络 (CNN)。报告的准确率范围为 38.02% 至 100%,信息传输速率范围为每分钟 1.55 至 49.25 比特。虽然 LDA 仍然是最常用的 AI 算法,但 CNN 已显示出令人鼓舞的结果,但由于其技术实施要求高,许多研究人员
在虚拟现实 (VR) 中,稳态视觉诱发电位 (SSVEP) 可用于通过脑信号与虚拟环境进行交互。然而,SSVEP 诱发刺激的设计通常与虚拟环境不匹配,因此会破坏虚拟体验。在本文中,我们研究了不同适应性刺激设计,以融入虚拟环境。因此,我们创造了不同形状的虚拟蝴蝶。形状从矩形翅膀到圆形翅膀,再到真实蝴蝶的翅膀形状。这些蝴蝶通过不同的动画(闪烁或拍打翅膀)引发 SSVEP 反应。为了评估我们的刺激,我们首先从文献中提取了适合 SSVEP 反应的频率。在第一项研究中,我们确定了在 VR 中产生最佳检测精度的三个频率。我们在第二项研究中使用这些频率来分析使用我们的刺激设计的检测精度和外观评级。我们的工作为融入虚拟环境并仍能引发 SSVEP 反应的 SSVEP 刺激的设计提供了见解。
使用代码调节的诱发潜力(C-VEP)对脑部计算机界面(BCIS)进行研究,最近取得了显着的进步(Martínez-Cagigal等,2021)。这些突破归因于刺激协议的复杂设计和创新的解码技术,它们共同建立了基于C-DEP的BCIS作为通信和控制应用程序的当前最新技术。该研究主题旨在通过促进原始贡献来推动领域的前进,并特别着眼于提高C-DEP驱动的BCI系统的可用性,可靠性和实用性。的目标是更加关注这一新兴领域,尽管它取得了显着的成就,但仍需要在临床环境和日常生活中促进这些技术的广泛采用。C-VEP刺激方案与其他主要类别的诱发反应明显不同,例如与事件相关的电位(ERP)和稳态视觉诱发的潜力(SSVEP)(Martínenez-Cagigal等人,2021年)。ERP协议通常基于奇数范式,其速度要慢得多,典型的刺激发作异步(SOA)约为250 ms(4 Hz),而C-vep中使用的至少16 ms(60 Hz)的速度相比。同样,尽管与ERP相比,SSVEP范式也相对较快,但SSVEP协议依赖于频率的方法,在这种方法中,刺激仅限于具有特定频率和相位的周期性信号。相比之下,C-VEP协议采用了噪声方法,允许更广泛的刺激序列(包括非周期性模式),同时还表现出对窄带干扰的更大弹性。此外,最近的证据表明,从信息理论的角度来看,在基于C-DEP的BCIS中,可以通过视觉诱发的途径达到的最大信息传输速率显着超过了基于SSVEP的系统(Shi等,2024)。