脑机接口 (BCI) 是一种使用脑电图 (EEG) 信号控制外部设备(例如功能性电刺激 (FES))的技术。基于 P300 和稳态视觉诱发电位 (SSVEP) 的视觉 BCI 范例已显示出巨大的临床用途潜力。已经发表了许多关于基于 P300 和 SSVEP 的非侵入式 BCI 的研究,但其中许多研究存在两个缺点:(1) 它们不适用于运动康复应用,(2) 它们没有详细报告用于分类的人工智能 (AI) 方法或其性能指标。为了弥补这一差距,本文采用 PRISMA(系统评价和荟萃分析的首选报告项目)方法来准备系统文献综述 (SLR)。重复或与运动康复应用无关的 10 年以上的论文被排除在外。在所有研究中,51.02% 涉及分类算法的理论分析。在剩余的研究中,28.48% 用于拼写,12.73% 用于各种应用(轮椅或家用电器的控制),只有 7.77% 专注于运动康复。在应用纳入和排除标准并进行质量筛选后,共选出 34 篇文章。其中,26.47% 使用 P300,55.8% 使用 SSVEP 信号。建立了五个应用类别:康复系统(17.64%)、虚拟现实环境(23.52%)、FES(17.64%)、矫形器(29.41%)和假肢(11.76%)。在所有作品中,只有四篇对患者进行了测试。报告的用于分类的机器学习 (ML) 算法中,最常用的是线性判别分析 (LDA) (48.64%) 和支持向量机 (16.21%),而只有一项研究使用了深度学习算法:卷积神经网络 (CNN)。报告的准确率范围为 38.02% 至 100%,信息传输速率范围为每分钟 1.55 至 49.25 比特。虽然 LDA 仍然是最常用的 AI 算法,但 CNN 已显示出令人鼓舞的结果,但由于其技术实施要求高,许多研究人员
主要关键词