认为他们的风险低于白人被告的风险。ProPublica 认为这存在很大问题,因为在这一应用领域的错误决策会对被告的生活产生重大影响,可能影响他们提前获释的前景、缓刑条件或保释金额(Angwin 等人,2016 年)。这个来自刑事司法领域的例子表明,歧视不仅是人类的问题,也是算法决策的问题。在考虑机器学习算法时,算法公平性尤其有趣,因为它们通常从过去的数据中学习,而这些数据可能已经有了偏差。此外,倾向于做出不公平决策的机器学习算法可能会导致系统性歧视,因为一旦经过训练,算法可能会为大量未来案件做出决策。因此,人工智能算法被用于个性化广告、招聘、信贷业务或定价等多种场合(Dastile 等人,2020 年;Lambrecht 和 Tucker,2019 年;Raghavan 等人,2020 年;Sweeney,2013 年),它们会严重影响个人和社会生活的进一步发展,例如扩大贫富差距,也会影响组织,例如违反机会均等政策(Kordzadeh 和 Ghasemaghaei,2022 年)。因此,至关重要的不仅是要确保人工智能系统不会系统性地歧视,更进一步,还要将其理解为减轻人类决策造成的潜在不公平现象的机会。本讨论文件主要参考了 2022 年 3 月举行的德国商业研究学会 (VHB) 第 100 届年会期间举行的算法公平性研讨会。研讨会是跨学科的,发言者来自哲学和伦理学、商业和信息系统工程、法律等领域,以及来自以下领域的实践代表:
主要关键词