人工智能决策中的公平性和解释性
机构名称:
¥ 2.0

摘要:影响个人的人工智能辅助决策提出了关于人工智能透明度和公平性的关键问题。许多研究强调了人工智能辅助决策中透明度/解释和公平性之间的相互关系。因此,同时考虑它们对用户信任或感知公平性的影响有利于负责任地使用社会技术人工智能系统,但目前很少受到关注。在本文中,我们分别研究了人工智能解释和公平性在特定基于人工智能的决策场景中对人类-人工智能信任和感知公平性的影响。一项模拟人工智能辅助决策在两个健康保险和医疗决策场景中的用户研究提供了重要的见解。由于全球大流行及其限制,用户研究以在线调查的形式进行。从参与者的信任角度来看,公平性仅在公平性水平较低的情况下才会影响用户信任,而公平性水平较低会降低用户信任。然而,增加解释有助于用户增加对人工智能辅助决策的信任。从感知公平的角度来看,我们的研究发现,引入低水平的公平性会降低用户的公平性感知,而引入高水平的公平性会提高用户的公平性感知。解释的加入无疑会增加公平性感知。此外,我们发现应用场景会影响信任和公平性感知。结果表明,在人工智能应用中使用人工智能解释和公平性陈述是复杂的:我们不仅需要考虑引入的解释类型和公平性程度,还需要考虑人工智能辅助决策的使用场景。

人工智能决策中的公平性和解释性

人工智能决策中的公平性和解释性PDF文件第1页

人工智能决策中的公平性和解释性PDF文件第2页

人工智能决策中的公平性和解释性PDF文件第3页

人工智能决策中的公平性和解释性PDF文件第4页

人工智能决策中的公平性和解释性PDF文件第5页

相关文件推荐

人工智能决策:
2023 年
¥1.0