随着人工智能产品的普及,人类和人工智能越来越多地合作做出决策。为了使这种类型的合作取得成功,人类需要了解人工智能的能力,以便有效地校准他们的信任。在这些合作关系中,以人类可以理解的方式解释决策和预测至关重要,以鼓励信任校准。可解释人工智能领域专注于将可解释性融入人工智能,但旨在使人工智能模型更具可解释性。因此,这项研究通常从以模型为中心的角度而不是以人为中心的角度来处理解释。与此同时,行业研究人员已经制定了指导方针,以帮助界面设计师有效地生成用户友好的解释。然而,这些指导方针通常过于宽泛,无法有效指导行业设计师的日常工作。我们的研究通过两种方法解决了这一差距:一个实证实验,研究人们如何回应解释以及哪些类型的解释对信任校准最有帮助;以及一个教育资源,帮助行业设计师了解用户可能有什么问题,以及使用环境如何影响他们可能使用的解释。我们的实验结果表明,解释并不总是有助于信任校准,实际上可能会损害信任校准,尤其是面对自我能力较低的新手用户时。我们对行业设计师进行的探索性访谈和可用性测试表明,人们渴望一种全面但易于访问的教育资源,以转化我们实验等研究并指导可解释的 AI 产品界面的设计。关键词
人工智能嵌入式系统参与人类决策的传播使得研究人类对这些系统的信任变得至关重要。然而,实证研究信任具有挑战性。原因之一是缺乏设计信任实验的标准协议。在本文中,我们介绍了现有的实证研究人工智能辅助决策中信任的方法,并根据实验方案的构成要素分析了语料库。我们发现信任的定义通常不整合在实验方案中,这可能导致研究结果被夸大或难以解释和跨研究比较。借鉴社会和认知研究中关于人与人之间信任的实证实践,我们提供了实用指南,以改进在决策环境中研究人与人工智能信任的方法。此外,我们提出了两类研究机会:一类侧重于对信任方法的进一步研究,另一类侧重于影响人与人工智能信任的因素。
人工智能嵌入式系统参与人类决策的传播使得研究人类对这些系统的信任变得至关重要。然而,实证研究信任具有挑战性。原因之一是缺乏设计信任实验的标准协议。在本文中,我们介绍了现有的实证研究人工智能辅助决策中信任的方法,并根据实验方案的构成要素分析了语料库。我们发现信任的定义通常不整合在实验方案中,这可能导致研究结果被夸大或难以解释和跨研究比较。借鉴社会和认知研究中关于人与人之间信任的实证实践,我们提供了实用指南,以改进在决策环境中研究人与人工智能信任的方法。此外,我们提出了两类研究机会:一类侧重于对信任方法的进一步研究,另一类侧重于影响人与人工智能信任的因素。
随着人工智能模型驱动的决策辅助工具的快速发展,人工智能辅助决策的实践越来越普遍。为了提高人机团队的决策能力,早期的研究多集中于提高人类更好地利用给定的人工智能驱动的决策辅助工具的能力。在本文中,我们通过一种互补的方法来应对这一挑战——我们旨在通过调整决策辅助工具背后的人工智能模型来训练“行为感知人工智能”,以考虑人类在采纳人工智能建议时的行为。具体来说,由于人们观察到当人类对自己的判断信心较低时,他们会更容易接受人工智能的建议,因此我们建议使用基于人类信心的实例加权策略来训练人工智能模型,而不是解决标准的经验风险最小化问题。在一个假设的、基于阈值的模型下,该模型描述了人类何时会采纳人工智能建议,我们首先推导出用于训练人工智能模型的最佳实例加权策略。然后,我们通过在合成数据集上进行系统实验,验证了我们提出的方法在提高人机联合决策性能方面的有效性和稳健性。最后,通过对真实人类受试者的随机实验以及他们采纳人工智能建议的实际行为,我们证明了我们的方法在实践中可以显著提高人机团队的决策性能。
摘要:能源部门迫切需要减少对石油的依赖,对环境保护的需求也日益增加,这些因素推动了可再生能源供应链管理的研究和实践努力。专业人士、全球机构和学者普遍承认研究供应链绩效与可再生能源之间的相关性的重要性。深入研究文章中所使用的方法、主要关注点、重点关注的特定可再生能源以及用于优化可再生能源供应链的绩效指标非常重要。本文提供了一种分析方法,以增进对可再生能源供应链定量决策领域研究的理解。分析从搜索已发表的文章开始。随后,将范围缩小到最相关的文章。本文还讨论了文献中的知识空白。研究结果为正在考虑开展该领域研究的研究人员提供了参考。
机器人是具有具体行为能力的智能体,会在多种不确定性因素下行动。在协助人类完成协作任务时,机器人需要传达它们的不确定性以帮助做出决策。在本研究中,我们研究了在高风险辅助决策任务中可视化机器人不确定性的使用情况。具体来说,我们探讨了机器人传达的不同不确定性可视化形式(图形显示与机器人的具体行为)和置信度水平(低、高、100%)如何影响人类在协作任务中的决策和感知。结果表明,这些可视化显著影响了参与者如何做出决策,以及他们如何看待机器人在不同置信度水平下的透明度。我们强调了潜在的权衡,并为机器人辅助决策提供了启示。我们的工作为人类如何在关键的机器人辅助决策场景中利用机器人传达的不确定性可视化提供了实证见解。
我们正在制定一项人工智能技能和意识能力计划。该计划旨在为我们的官员和部长从智能客户到人工智能数据科学家等各个层面开发培训途径。我们的目标是到 2024 年为该部门制定一个强大且全面实施的计划,尽可能使用现有流程,但不仅限于当前可用的流程,并根据 DfT 的情况量身定制。这包括数据伦理方面的专业培训,将由开放数据研究所 (ODI) 提供。我们从南安普顿大学和赫瑞瓦特大学引进了两名人工智能专业博士来支持这项工作。商业和数字等专业领域正在确定其职能的额外培训需求,并将根据需要推出针对数字平台和采购流程的相关培训。
人工智能 (AI) 越来越多地被用于各种决策任务,通常作为推荐者,提供 AI 认为正确的建议。然而,最近的研究表明,这可能会削弱人类的分析思维,导致人类对 AI 的过度依赖,从而削弱人机团队的协同作用。相比之下,群体决策中的人类顾问扮演着各种角色,例如分析替代方案或批评决策者以鼓励他们的批判性思维。这种角色的多样性尚未在 AI 辅助中得到实证探索。在本文中,我们研究了三个 AI 角色:推荐者、分析者和魔鬼代言人,并评估了它们在两个 AI 性能水平上的影响。我们的结果显示了每个角色在任务执行、依赖适当性和用户体验方面的不同优势和局限性。值得注意的是,推荐者角色并不总是最有效的,特别是如果 AI 性能水平较低,分析者角色可能更可取。这些见解为根据不同情况设计具有自适应功能角色的 AI 助手提供了有价值的启示。
随着人工智能技术与人类决策过程的融合日益紧密,对人工智能模型的对抗性攻击成为比以往任何时候都更令人担忧的问题,因为它们可能会严重损害人类对人工智能模型的信任,降低人机协作的有效性。虽然已经提出了许多对抗性攻击方法来降低人工智能模型的性能,但人们很少关注这些攻击将如何影响与模型交互的人类决策者,以及如何战略性地部署对抗性攻击以最大限度地减少人类的信任和依赖。在本文中,通过一项以人为对象的实验,我们首先表明,在人工智能辅助决策中,攻击的时机在很大程度上影响了人类对人工智能的信任和依赖的降低程度——当攻击发生在人类高度自信的决策任务上时,这种降低尤为明显。基于这些见解,我们接下来提出了一个算法框架来推断人类决策者对人工智能模型的隐藏信任,并动态决定攻击者何时应该对模型发起攻击。我们的评估表明,按照所提出的方法,攻击者可以部署更有效的攻击,并获得比采用其他基线策略更高的效用。