分层的过渡金属二分法(TMDS),不仅由多种化合物的组合,而且还具有丰富的晶体结构而爆发了许多可能性。探索新材料,确定其结构和特性一直是材料科学中的原始动机。在这里,我们报告了具有三层堆叠序列(3R)的稀有Tase 2的合成和附魔超导性。环境压力化学蒸气沉积(CVD)策略已用于实现纯3R-Tase 2。低温传输数据显示,在3R-Tase 2中,高超导过渡温度(T C)为1.6 K,这显着高于两层堆叠序列(2H,H:HEXAGONAL)相。结果表明,T C对层堆叠顺序相当敏感,并确认3R在Tase 2中的2H上强烈优选超导性。这项工作证明了一个独特的3R相平台研究超导性能的综合,并提供了有关操纵晶体结构的新见解,以访问超高t c。
旨在研究心脏病分子碱基和致病机制的研究中的主要局限性是能够再现人类疾病特征的细胞模型的有限可用性。迄今为止,跨越大小动物模型的心脏疾病的几种体内模型(Patten and Hallporter,2009; Tsang et al。,2016),但纤维素研究的大部分基于原发性培养和细胞系(Savoji等,2019)。所有这些模型肯定都是有用的,但是每个模型都有局限性,这可能导致纤维素模型中的可翻译性有限。的确,来自成年动物的主要培养物的两个局限性是它们一旦镀的短生存力,并且依赖于操作员的质量。另一方面,从新生动物(尤其是大鼠和小鼠)获得的细胞系或原发性培养物的主要缺点可能是它们缺乏超微结构和未成熟代谢。发现人类诱导的多能干细胞(HIPSC)的发现有望在菜肴中对许多不同的人类疾病进行建模并研究潜在的细胞病理生物学,甚至建立用于药物发现/毒性的体外测定法。鉴于心血管疾病(CVD)是全球最大的杀手,因此获得了获得HIPSC衍生心肌细胞(HIPSC-CMS)方案的优化,已受到了很多关注和资金。然而,心脏是一个复杂的器官,包括越来越多的细胞类型以及维持去极化和同步收缩的有效传播所需的独特空间结构。”总体而言,事实证明,小鼠模型的翻译价值(Nerbonne,2004年),最近的组织工程改进可以帮助克服与HIPSC在心血管研究中使用有关的当前局限性。当前从HIPSC获得心脏模型的主要策略如图1所示。在此角度,我们通过这些模型解决了当前局限
图 1. 两种 iPSC 系的干细胞表征示例。(A)TaqMan hPSC Scorecard Panel 将样本的基因表达谱与参考集的基因表达谱进行比较(分别为彩色点和灰色箱线图)。该检测使用超过 90 个基因和 13 个 PSC 的静态数据库进行比较。(B)PluriTest 检测使用微阵列数据根据多能性评分(反映多能性程度)和新颖性评分(反映分化程度)确认多能性标记表达。该检测使用超过 36,000 个转录本和超过 450 种细胞和组织类型的流体参考集进行比较。(C)KaryoStat+ 检测提供全基因组覆盖,可准确检测拷贝数变化和基因组畸变。
2024 年 4 月 20 日 — 本章总结了我们研究所利用诱导技术对选定的药用作物和无性繁殖作物进行遗传改良方面所取得的进展……
摘要 本研究的目的是评估细菌能力的诱导以便随后进行转化。细菌转化是重组DNA技术中的关键过程。在自然界中,细菌在极其特殊的情况下以短暂的方式从环境中捕获游离DNA。诱导这种转移的体外方法首先需要使细菌具有随后进行转化的能力。因此,这项工作对两个步骤都进行了体外测试。所有协议均在 UTFPR 蓬塔格罗萨校区的生物工程实验室进行。使用大肠杆菌DH5-alpha菌株进行能力诱导,并使用质粒pUC19进行转化。所得结果表明转化细胞成功生长,可以在选择性培养基中选择出对质粒所具有的抗生素具有抗性的细胞。这些技术对分子生物学和基因工程具有重要意义,可以对细菌遗传物质进行控制操作,以用于各种生物技术应用,例如生产异源蛋白质,从而在扩展遗传知识和开发新生物技术方面发挥着重要作用。关键词:分子生物学;生物技术;基因转化。
在自然免疫学上发表的最新论文中,Ding等。提供了有关训练有素的先天免疫如何消除癌症的机制的新见解。作者表明,酵母衍生的整个β-葡聚糖颗粒(WGP)提高了肺间质性巨噬细胞对肿瘤来源因子的反应性,与随后通过增强的细胞毒性对癌细胞抑制肿瘤转移相关的肿瘤转移。作者确定了由WGP训练的巨噬细胞中的代谢鞘脂 - 线粒体纤维轴是负责这种现象的关键途径,并将其归类为受过训练的先天免疫力的机制[1]。传统上,先天和适应性免疫系统通过其特殊的养育和记忆能力而区分。长期以来,人们一直认为免疫记忆是适应性免疫反应的独家标志。另一方面,先天免疫细胞没有被视为可以保留记忆表型的细胞。近年来,这种范式发生了变化:新兴的证据表明,某些微生物刺激和内源性配体会诱导先天免疫细胞功能持久的变化,从而在继发性刺激时会增加其反应性。此过程被称为“训练有素的先天免疫”或“受过训练的免疫力” [2]。在与受过训练的免疫刺激的第一次接触后,易感细胞会经历代谢,表观遗传和/或转纹理重编程,从而提高对继发性侮辱的反应性[3,4]。训练有素的先天免疫主要在单核细胞和巨噬细胞中进行了描述[3],后来在粒细胞中[5]。这些先天的免疫细胞具有识别和应对广泛刺激曲目的能力;然而,大多数对训练有素的先天免疫力的研究都集中在巴奇氏菌(BCG)疫苗(BCG)疫苗,牛肉分枝杆菌的弱版和真菌β-来自念珠菌,Trametes versicolor或saccharomyces cerevisiae的真菌β-葡萄糖。在治疗感染性和炎症性疾病的治疗方面已经探讨了训练有素的先天免疫力,而促使训练有素的免疫作为癌症的治疗策略,直到最近才出现。例如,BCG疫苗接种对膀胱癌,黑色素瘤,淋巴瘤和白血病有抗肿瘤作用。 尽管β-葡聚糖也据报道会诱导抗肿瘤对原发性肿瘤的抗肿瘤作用[5-7],但训练有素的先天性免疫细胞引起抗肿瘤反应的确切机制例如,BCG疫苗接种对膀胱癌,黑色素瘤,淋巴瘤和白血病有抗肿瘤作用。尽管β-葡聚糖也据报道会诱导抗肿瘤对原发性肿瘤的抗肿瘤作用[5-7],但训练有素的先天性免疫细胞引起抗肿瘤反应的确切机制
缩写 8-oxodG 8-氧代-7,8-二氢-2′-脱氧鸟苷 8-oxoGua 8-氧代-7,8-二氢鸟嘌呤 A549 肺泡基底上皮细胞腺癌 AA 花生四烯酸 AhR 芳烃受体 BaP 苯并[a]芘 BEAS-2B 永生化肺上皮细胞 BER 碱基切除修复 CT-DNA 小牛胸腺 DNA CYP 细胞色素 P450 ELISA 酶联免疫吸附试验 EOM 可提取有机物 ETS 环境烟草烟雾 GC/MS 气相色谱/质谱法 HEL 人胚胎肺成纤维细胞 HPLC-MS/MS 高效液相色谱-串联质谱法 IARC 国际癌症研究机构 IsoP 15-F 2t-异前列腺素 IUGR 宫内生长受限 LBW 低出生体重(< 2500 g) LC/GC-MS 液相/气相色谱质谱联用 LPO 脂质过氧化 NER 核苷酸切除修复 NHEJ 非同源末端连接修复 OGG1 8-氧鸟嘌呤 DNA 糖基化酶 PAH 多环芳烃 PBL 外周血淋巴细胞 PGE 2 前列腺素 E2 PM 颗粒物 PTGS 前列腺素内过氧化物合酶 ROS 活性氧 S9 组分 微粒体组分酶 SNP 单核苷酸多态性 UGT UDP-葡萄糖醛酸转移酶 XRCC5 X 射线修复交叉互补 5
诱导邻近靶向蛋白质降解 (TPD) 是近十年来出现的突破性药物研发策略。1–3 在 TPD 中,无法用药的致病蛋白质被招募并通过泛素-蛋白酶体途径快速破坏和消除,这是蛋白质降解和体内平衡的主要机制。1–5 泛素-蛋白酶体途径是细胞内务管理过程的一部分,通过酶级联发生,导致蛋白质泛素化和随后的降解。4,5 泛素-蛋白酶体系统 (UPS) 是细胞蛋白质降解和维持蛋白质体内平衡的主要机制,是细胞常规内务管理过程的一部分。因此,这意味着 TPD 应用的潜在广度几乎是无限的。UPS 过程涉及酶级联,导致目标蛋白质 (POI) 泛素化。
在水位波动区(WLFZ)的流量中,氮(N)的养分水平和磷(P)在上覆的水中由于土壤养分的释放而膨胀,从而影响cynodon dactylon等植物的分解。然而,对这些营养变化对植物养分释放和水动力学的影响的研究有限,使对水质影响的准确评估复杂化。这项研究使用了8个具有不同初始养分水平的水样品来模拟WLFZ土壤养分引起的N和P变化,并检查了Cynodon dactylon的分解和养分动力学。的结果表明,量量显着增加了N和P的初始水平,尤其是作为颗粒氮(PN)和颗粒磷(PP),影响了水中的植物分解和营养动力学。60天后,Cynodon Dactylon损失了47.97%-56.01%干物质,43.58%-54.48%的总氮(TN)和14.28%-20.50.50%的总磷(TP)。初始PN和总溶解氮(TDN)促进了干物质损失,PN和PP促进了TP损失,而PN和PN和TDN抑制了TN损失。到第60天,在上面的水中,植物释放的N和PN或TP之间没有发现正相关。但是,初始PP和PN水平与TN和TP负相关,表明抑制作用。进一步的分析表明,从土壤中释放出的PN和PP支持微生物骨料的形成,增强了硝化和磷的去除,从而随着时间的推移改善了水纯化。
Alan S. Wang, 1 , 2 Leo C. Chen, 1 , 2 R. Alex Wu, 3 , 4 Yvonne Hao, 1 David T. McSwiggen, 1 , 5 Alec B. Heckert, 1 , 5 Christopher D. Richardson, 1 , 2 Benjamin G. Gowen, 1 , 2 Katelynn R. Kazane, 1 , 2 Jonathan T. Vu, 1 , 2 Stacia K. Wyman, 1 , 2 Jiyung J. Shin, 1 , 2 Xavier Darzacq, 1 , 5 Johannes C. Walter, 3 , 4 和 Jacob E. Corn 1 , 2 , 6 , 7 ,* 1 加州大学伯克利分校分子与细胞生物学系,美国加利福尼亚州伯克利市 94720 2 加州大学创新基因组学研究所加利福尼亚州伯克利市,伯克利,加利福尼亚州 94720,美国 3 哈佛医学院生物化学与分子药理学系,马萨诸塞州波士顿 02115,美国 4 霍华德休斯医学研究所,哈佛医学院生物化学与分子药理学系,马萨诸塞州波士顿 02115,美国 5 加州大学伯克利分校加州再生医学卓越中心研究所,伯克利,加利福尼亚州 94720,美国 6 ETH Z € urich 生物系,8093 Z € urich,瑞士 7 主要联系人 *通信地址:jacob.corn@biol.ethz.ch https://doi.org/10.1016/j.molcel.2020.06.014