高谐波产生(HHG)已引起了对材料特性和超快动态的探索的极大关注。然而,缺乏对HHG和其他准颗粒(例如声子)之间耦合的考虑,一直阻碍对HHG中多体相互作用的理解。在这里,我们通过研究非绝热(NA)相干偶联的HHG来揭示了Quasiparticle耦合的强场动力学中多体电子载体机制。相干的声子被揭示出通过声子变形效应引起的绝热带调制以及多个山谷中光载体的Na和非平衡分布有效地影响HHG。绝热和NA机制通过影响声子周期和HHG强度振荡的相位延迟而离开指纹,这两者在实验上都是可测量的。对这些数量的研究可以直接探测材料中电子相互作用。
摘要:材料平台的进步表现出强大而鲁棒的电形效应对于在开发具有低功耗的高效光电组件中,对于现代光学通信系统而言,具有低功率的高效光电组件至关重要。在这项工作中,我们研究了通过化学溶液沉积技术生长的薄膜铅锆钛酸钛酸钛酸钛酸钛酸盐(PZT)底物,这是片上等离子电元电磁调节剂的潜在平台。使用15μm长的电彩力定向调节器实现高调制深度(> 40%)。观察到约200 kHz的调制频率响应中的异常截止,并在可能的重新定向效应方面进一步研究。第二次谐波产生信号受到外部应用的电场的影响,这表明域的重新定位效应可以造成观察到的异常频率响应。
Niobate已在光电子中被商业使用。它特别有利,因为其高二阶非线性和宽阔的透明度窗口从近紫外线延伸到中期。1,2,3得益于最近的微加工的最新进展,薄膜硅锂(TFLN)现在可以直接以硅盒顶部的波导形式进行图案,从而在整个设备中实现了强烈的引导光。4,5据报道,在最新设备中,图案化的TFLN波导中的传播损失小于<0.1dB/cm。6,7,8除了其电形性能,第二阶和三阶的高非线性,以及低损失的结合,还承诺了能够提供高效率非线性频率产生的优质光子积分电路(PIC)平台。在这项工作中,在TFLN波导中研究了二阶三波混合过程,尤其是第二次谐波产生(SHG)及其在制造波动方面的公差边缘。
摘要:光学非线性过程在广泛的应用中是必不可少的,包括超快激光器,显微镜和量子信息技术。在不同的非线性过程中,二阶效应通常不堪重负,除了中心对称系统,二阶易感性在其中消失了,从而允许使用第三阶非线性。在这里,我们演示了一个混合光子平台,可以灵活地调整二阶和三阶敏感性之间的平衡。通过用原子上稀薄的钨化装饰超高的二氧化硅微腔,我们观察到腔体增强的第二谐波产生和汇总频率产生,并以连续波激发的功率水平仅为几百微米。我们表明,可以通过仔细选择二维材料的大小和位置来实现单个设备中二阶和三阶非线性的共存。我们的方法可以推广到其他类型的腔体,从而释放具有对新应用的非线性敏感性的混合系统的潜力。关键字:二维材料,超高Q微腔,第二谐波一代,非线性光学元件,过渡金属二核苷
了解外用药物在人体皮肤上的输送和扩散对于药物和化妆品研究都至关重要。这些信息在药物开发的早期阶段至关重要,可以识别出以最佳浓度输送到目标皮肤区的最有希望的成分。有不同的皮肤成像方法(侵入性和非侵入性)可用于表征和量化药物在体内和体外人体皮肤内的时空分布。本综述的第一部分详细介绍了侵入性成像方法(放射自显影、MALDI 和 SIMS)。第二部分回顾了可应用于体内的非侵入性成像方法:i)荧光(常规、共焦和多光子)和第二谐波产生显微镜;ii)振动光谱成像方法(红外、共焦拉曼和相干拉曼散射显微镜)。最后,提出了选择成像方法的流程图,以指导人体皮肤体外和体内药物输送研究。© 2020 Elsevier BV 保留所有权利。
高功率半导体激光器 三洋电机公司位于新泽西州艾伦代尔的半导体研究中心开发出了一系列可靠的 150 mW 激光二极管,它们的振荡波长在 800 至 870 纳米之间。这些高功率激光器有望提高可擦除光盘存储器和图像处理设备的处理速度,并可用于卫星通信。此外,当它们与二次谐波产生 (SHG) 设备一起使用时,它们可以用作蓝色激光产生的泵浦源。具有足够功率的蓝谱激光器对于信息密集型应用至关重要,例如长时间播放、高清、动态图像视频存储以及全彩图像处理。当激光器发出的光穿过 SHG 设备中的特殊晶体时,该设备会使红外光谱激光器的频率加倍,使光束的波长减半,并将其从红外光转变为色谱上的可见蓝光。蓝色激光束照亮了接收器表面约 25% 的区域,使激光光盘的记录密度增加了四倍,并显著提高了激光图像处理应用中的分辨率。三洋的开发克服了之前的
标题:等离子体-半导体界面处的电离波 名字:戴维 姓名:PAI 实验室:等离子体物理实验室 (LPP) 电子邮件:david.pai@lpp.polytechnique.fr 网页:https://www.lpp.polytechnique.fr/-David-Pai- 研究领域: 主要领域:激光和等离子体物理 次要领域:材料科学 方法:大气压等离子体、表面等离子体、纳秒放电、等离子体诊断(例如光发射光谱、电场诱导的二次谐波产生、汤姆逊散射)、材料化学诊断(例如拉曼和光致发光光谱) 博士课程主题:等离子体-表面相互作用是许多类型等离子体物理学的关键要素。对于非平衡等离子体,其中电子的温度比原子和分子的温度高得多,一种常见的现象是表面电离波 (IW)。使用复合材料代替块体金属/电介质作为电极或传播表面可能会产生新的相互作用。特别是,与半导体相关的光电效应可以使基于微电子中常用的绝缘体上硅 (SOI) 技术的 IW 沿表面传播均匀化。我们的假设是气相和电子空穴 IW 沿 SOI 界面相邻地共同传播。
摘要:二维材料有望在下一代电子和光电设备中发挥重要作用。最近,由于其独特的物理特性和潜在的应用,扭曲的双层石墨烯和过渡金属二核苷引起了极大的关注。在这项研究中,我们描述了光学显微镜的使用来收集二硫化钼(MOS 2)的化学蒸气沉积(CVD)的色彩空间,并应用了语义分割卷积神经网络(CNN)的应用,以准确且快速地识别MOS 2 Flakes的厚度。第二个CNN模型经过训练,以在CVD生长的双层薄片的扭曲角度提供精确的预测。该模型利用了一个数据集,该数据集包含10,000多个合成图像,其中包括从六角形到三角形形状的几何形状。通过第二次谐波产生和拉曼光谱执行了对扭曲角度深度学习预测的后续验证。我们的结果引入了一种可扩展的方法,用于自动检查扭曲的原子薄的CVD生长双层。关键字:扭曲角度,过渡金属二核苷(TMD),深度学习,OpenCV,拉曼
摘要 电磁波和标量波现象对转基因生物 (GMO) 的影响是物理学、生物学和新兴技术的一个迷人交汇点。本文探讨了波与生物系统相互作用的理论和数学基础,重点研究了横电磁波 (TEM)、赫兹波和假设的标量波的潜在影响。DNA 具有复杂的螺旋结构和电磁特性,可充当能够与这些波产生共振的纳米级天线。通过麦克斯韦方程和量子力学建模的能量转移揭示了改变基因表达、诱导表观遗传变化和破坏细胞生物电场的合理机制。在非线性效应(例如谐波产生和介电加热)对转基因生物稳定性、性状表达和细胞功能的影响的背景下进行了分析。虽然 TEM 和赫兹波与生物系统的相互作用有据可查,但标量波仍是推测性的,需要进一步的实验和理论研究。本文结合基础物理学和生物物理学,阐明了这些能量场如何影响转基因生物,并强调了其在农业、医学和生物技术领域的潜在应用和风险。