相干的光藻效应导致在相干光束的吸收干扰下产生电流,并允许铭文的空间充电光栅铭文,从而导致二阶敏感性(𝝌(2))。铭刻的光栅会自动导致干扰光束之间的准阶段匹配。理论和实验研究,考虑到第二次谐波产生的堕落病例,显示出显着的转化效率提高。然而,理论和实验之间的联系尚未完全确定,因此对于给定材料平台的一般准则和可实现的转换效率仍不清楚。在这项工作中,在理论上分析了光学波导中相干光钙化效应的现象学模型。该模型预测了非排优体总和生成的存在准阶段匹配光栅,这是第一次在实验中确认。此外,配制了连贯的光藻过程中空间充电光栅铭文的时间动力学。基于开发的理论方程式,提取了氮化硅化学过程的材料参数。获得的结果提供了比较不同平台的性能和潜力的基础。这项工作不仅补充了一致的光钙效应理论,而且还使我们能够确定关键参数和限制因素,以铭文(2)光栅。
二维材料中的层间电子耦合可通过堆叠工程实现可调和的突发特性。然而,它也会导致二维半导体电子结构的显著演变和激子效应的衰减,例如当单层堆叠成范德华结构时,过渡金属二硫属化物中的激子光致发光和光学非线性会迅速降低。这里我们报告了一种范德华晶体——二氯化氧化铌 (NbOCl 2 ),其特点是层间电子耦合消失,块体形式下具有单层状激子行为,以及比单层 WS 2 高三个数量级的可扩展二次谐波产生强度。值得注意的是,强二阶非线性使得能够通过自发参量下转换 (SPDC) 过程在薄至约 46 纳米的薄片中产生相关参量光子对。据我们所知,这是第一个在二维层状材料中明确展示的 SPDC 源,也是有史以来报道的最薄的 SPDC 源。我们的工作为开发基于范德华材料的超紧凑片上 SPDC 源以及经典和量子光学技术中的高性能光子调制器开辟了一条道路 1–4 。
项目概述:纳米结构化人造材料(光子晶体和光学元面积)中线性和非线性光 - 物质相互作用的实验和理论研究,在寻找光子学中的新功能。涉及的某些物理现象是半导体不透明区域的谐波产生,金属等离子波的激发,导电氧化物和拓扑表面波。的目的是最大程度地提高非线性跨膜对新的纳米光器设备的潜在影响,例如多频发生器,紫外线中扩展的可调发射器和光学传感器,所有纳米材料和非线性光学的互连场均具有。选定的候选人将致力于进行理论和实验任务组合的新型纳米光结构的设计和测量:开发数值模拟,设置新的实验设置并在实验上证明纳米结构的光学特性。参加了美国,意大利或澳大利亚著名研究小组的国际合作和国际实习。参加国家和国际会议。成为我们研究小组的一部分,与其他从事非线性光学,非线性动力学和激光领域的学科的博士学位学生保持联系,在国际层面上良好认可。
摘要最近,由于在光学超材料,超敏感的等离激元纳米量学学,增强的非线性谐波产生等方面的吸引人的应用,血浆诱导的光学磁化吸引了人们对纳米光子学和等离子间学的研究兴趣。据我们所知,在这里,我们在实验和理论上首次观察到在超薄等离子体型纳米腔内的平面内磁性偶极共振,由二氧化硅涂层的金纳米球二聚体组成,并偶联到金薄膜。结合了多极膨胀和全波数值模拟,我们揭示了磁共振是由围绕球体二聚体和金膜包含的纳米厚的三角形区域循环的位移电流环引起的,从而导致腔隙间隙中的磁场强度极大地增强了磁场强度。在单粒子水平上使用极化分辨的深色场成像和光谱法,我们明确地“可视化”了诱导磁性模式的光谱响应和辐射极化,其特征与电偶极共振截然不同。我们进一步发现,磁共振频率高度取决于腔间隙厚度和纳米圈尺寸,从而可以直接从可见光到近红外区域进行简单的谐振调整,从而为磁共振增强的新途径增强了非线性光学光学和手性光学。
讲座 1. 学科简介和简史。本课程的目的。非线性光学和量子光学的简要历史。它们是如何融合的。没有非线性光学的量子光学:原子和固态发射器。非线性光学基础:参数和非参数过程;非线性偏振;每模式平均光子数(亮度)。 1. 本课程的目的。本课程计划在非线性和量子光学的边界上。量子光学研究的光的量子态以及与光相关的量子信息技术中使用的光量子态大多是通过非线性光学效应产生的。例子有:纠缠光子对、单光子和通过“预示”制备的多光子态、压缩真空、压缩相干态。了解这些状态是如何产生的很重要。除了用于产生量子光的非线性光学方法外,还有用于检测量子光的方法,例如上转换。本课程面向已经学习过非线性光学甚至量子光学的人员,但如果有必要,我们将填补一些理解上的空白。(或者可能提出新的空白,这总是有用的。)将有 10 堂讲座,每两堂讲座后有一个问题课(由 Cameron Okoth 主持),其中的问题将与讲座内容密切相关。重点将放在实验和估算上。作为课程的一部分,我们将组织一次实验室参观,我们将展示谐波产生、和频产生、高增益参量下变频。所有这些都将很好地说明课程。2. 非线性和量子光学的简要并行历史。早期的频率转换实验。任何频率转换都是非线性效应。仅使用线性光学元件,您无法获得“从蓝色变为红色”或反之亦然,您无法改变光谱。从这个意义上说,荧光肯定是一种非线性效应,它从 19 世纪开始就为人所知,赫歇尔在 1845 年和斯托克斯在 1852 年分别进行了两次实验(图 1)。事实上,斯托克斯迈出的重要一步是他使用滤光片来选择激发辐射的短波长部分(教堂蓝玻璃只透射紫外线)和长波长荧光(葡萄酒不透射紫外线)。结论是荧光发生了红移。此外,1928 年通过实验发现的拉曼散射也是一种非弹性散射,可以用非线性光学的形式来处理。表征拉曼散射强度的拉曼张量与立方非线性磁化率一一对应。但传统上,只有 1961 年弗兰肯关于二次谐波产生的实验才被认为是非线性光学的开端。弗兰肯的实验 这个实验是在激光出现后才有可能的。第一台激光器(当时称为光学微波激射器)是由梅曼于 1960 年制造的,但 1961 年弗兰肯已经使用了商用脉冲红宝石激光器!当然,微波的非线性光学
呼吸机诱导的隔膜功能障碍(VIDD)是需要机械通气(MV)和神经肌肉阻滞(NMBA)的重症监护单元(ICU)治疗的常见续集。它的特征是隔膜无力,延长的呼吸器断奶和不良后果。解离性糖皮质激素(例如Vamorolone,VBP-15)和伴侣共同诱导剂(例如BGP-15)先前在ICU-RAT模型中显示出积极影响。在肢体肌肉疾病肌病中,优先肌球蛋白损失占上风,而肌纤维蛋白翻译后修饰在VIDD中更为主导。尚不清楚特定力的明显下降(归一化为横截面区域)是否是收缩性信号变化的纯粹结果,或者隔膜弱点是否也通过肌球的细胞体系结构来迅速发展,以及vbp-15或BGP-15或BGP-15的范围,通过肌发光的细胞体系结构来实现结构性相关。为了解决这些问题,我们进行了无标签的多光子第二次谐波产生(SHG)成像,然后在单个diaphragm肌肉肌中进行定量形态计量学,从健康大鼠进行MV + NMBA的五天或10天的健康大鼠,以模拟ICU治疗而无需混淆病理(例如Sepsis)。大鼠每天接受泼尼松龙,VBP-15,BGP-15或无治疗。肌球蛋白-II SHG信号强度,纤维直径(FD)以及肌纤维角平行性的参数
二维Terahertz光谱(2DTS)是一种核磁共振的Terahertz类似物,是一种新技术,旨在解决复杂的凝结物质系统中的许多开放问题。常规的理论框架普遍用来解释离散量子水平系统的多维光谱,但是对于紧密相关的材料中的集体激发的连续性是不足的。在这里,我们为模型集体激发的2DT(即分层超导体中的Josephson等离子体共振)开发了一个理论。从远低于超导相变的温度下的均值轨道方法开始,我们获得了多维非线性响应的表达式,这些反应适合于从常规的单模式场景中得出的直觉。然后,我们考虑在超导临界温度t c附近的温度,其中超出均值字段的动力学变得重要,并且常规直觉失败。随着t c接近t c的浮动增殖,对非线性响应的主要贡献来自反向传播的约瑟夫森等离子体的光学参数驱动器,该驱动器与均值范围的预测质量不同。与此相比,与一维光谱技术相比,例如第三次谐波产生,2DTS可用于直接探测热激发的有限摩肌等离子体及其相互作用。我们的理论很容易在丘比特中进行测试,我们讨论了约瑟夫森等离子体的当前背景以外的含义。
第二次谐波(2Ω)非线性霍尔效应(NLHE)[1,2]可以通过用基于大的基于晶体的同类产品代替古老的基于界面的设备,从而带来逻辑和能量收获技术的新范式[3]。另一方面,NLHE对费米表面的几何形状非常敏感。nhle可以在鞍点[4]和扁平带的位置提供丰富的信息,并直接探测原子上薄的Chern绝缘子中的拓扑相变[5]。在原子薄量子材料的异质结构中获取有关电子特性的信息至关重要,那里的结构对称性工程和热功能可调的复杂的准粒子带共存。在这项工作中,我们在反转对称性的高质量双层石墨烯(BLG)上进行了实验研究,这是掺杂(n)介电位移的函数(d)和温度(t)。我们的结果揭示了不可预见的外在散射和界面应变诱导的内在浆果曲率偶极子(BCD)的二二,其符号和幅度可以通过N和/或D在BLG的低能带边缘附近调节。远离带边缘,观察到NLHE由外部散射占主导地位。BLG中的第二个谐波产生效率V XX(Y)2Ω /VXXΩ2为〜50 V -1,在所有可伸缩材料中最高。此外,v xx(y)2Ω的符号变化的n -d分散轨迹轨迹在BLG中带走了与拓扑相关的LIFSHITTINTIONS。我们的工作将BLG建立为一个高度可调的平台,以生成NLHE,进而探测双层石墨烯中引人入胜的低能电子结构。
摘要:一个名为plexciton的准粒子来自等离子体和分子激子之间的杂交,这些杂交在灭绝,散射和反射光谱方面表现出特征的光谱特征,例如Fano共振和RABI分裂。然而,对丛杂种中荧光特性的理解尚不清楚,尤其是对于非线性上将的排放。在这封信中,我们准备了三个组成的丛杂种杂交体,该杂种与两种氰胺染料(CY3和CY5)耦合到AG纳米结构膜并研究了它们增强的非线性辐射,包括两光子发光(TPL),第二谐波(TPL),第二谐波生成(SHG)(SHG)和表面增强的Raman Raman Raman散射(Sersserssers)。丛杂种显示出分裂的灭绝频谱,其中五个峰与二聚体染料的杂种诱导的五峰,并带有Ag膜的表面等离子体共振。在1260 nm的激光激发下,(Cy3-cy5)/ag混合动力车的TPL增强了6.3倍,与Cy5/ag的两种组件混合体相比,SHG的增强率为5.1倍。我们的实验结果为设计和制造具有高效的非线性辐射设计和制造多组分丛设备提供了宝贵的见解。丛杂种,其特征在于其特征灭绝的特性和很大程度上增强的上流发射,对非线性光学,量子信息处理,生物医学感应和光化学的应用有很大的希望。关键字:等离子体,分子激子,多组分,两光子发光,第二谐波产生,表面增强的拉曼散射
摘要 氨基酸及其复合物是一种有机或半有机材料,由于其易于用于光学存储设备而受到广泛关注。DL-丙氨酸是稀有的在非中心对称基团中结晶的氨基酸之一。本文展示了 DL-丙氨酸重铬酸钾 (DAPC) 单晶如何表现出足够的生长。通过单晶 X 射线衍射和粉末 X 射线衍射分析了 DAPC 晶体。利用热重分析/差热分析 (TGA/DTA) 和差示扫描量热法,本文还研究了 DAPC 晶体的熔点、热稳定性、分解点和其他热参数。结果表明,DAPC 的分解点为 397 °C,与 TG/DTA 的分解点相似。还测量了介电常数、耗散和交流电导率,并分析了结果以了解电流操作模型的各种特征。DAPC 单晶的活化能为 0.074 eV。关键词:DAPC,电介质,单晶,热,XRD 引言 有机材料组合在光学生物稳定性和谐波产生 (SHG) 中起着重要作用 [1]。近年来,一些研究人员对其光学特性 (非线性光学) [2] 进行了广泛的研究。同时,氨基酸链在稳定蛋白质结构和催化酶促反应方面起着重要作用,已经发表了许多关于氨基酸(如 L-丙氨酸)的研究文章 [3]。新材料不断被研究,因此,晶体产品的数量多年来不断增加。因此,单晶的发展确保了科学材料的进一步发展。 晶体具有美丽的颜色、闪耀着光芒的光滑表面、清晰的清晰度、具有锋利边缘的多种形状以及透明度(对于某些类型)[4]。水晶传统上被用作装饰品,唤醒了第一批人的审美知识。目前,水晶产品的用途已经从装饰领域扩展到各个科学领域的许多其他实际应用。同时,晶体生长是信息科学与工程的一个重要方面,因为它