摘要 本文介绍了一种用于植入式生物医学设备的超低压 (ULV) 高分辨率低功耗连续时间 delta-sigma 调制器。二阶单比特调制器采用前馈架构和新型全差分 ULV 放大器,在 0.4 V 电源下实现高信噪比加失真比 (SNDR) 和节能运行。该放大器采用栅极输入 AB 类输出拓扑和局部共模反馈 (CMFB) 环路,以实现大输出摆幅,从而减少谐波失真并降低功耗。采用强大的时钟发生器来确保调制器在 ± 10% 电源变化范围内的一致性能。该调制器采用 130 nm CMOS 技术制造,带有常规 VT 晶体管。测量结果表明,在 500 Hz 带宽内,在标称 0.4 V 电源下,该调制器实现了 75.5 dB SNDR,功耗为 6.6 µ W。在最近报道的用于植入式生物医学应用的 0.4 V 或以下电压下工作的 DSM 中,所实现的 SNDR 是最好的。即使在 0.32 V 电源下工作,该调制器也能实现 69 dB SNDR,功耗为 3.7 µ W。关键词:连续时间、Delta-Sigma 调制器、生物医学设备、模拟数字转换器、超低压放大器、超低压电路分类:集成电路(存储器、逻辑、模拟、射频、传感器)
摘要:双级独立光伏 (PV) 系统存在稳定性和可靠性问题,其提供最大功率的效率受环境条件变化的极大影响。混合反步控制 (BSC) 是最大功率点跟踪 (MPPT) 的良好候选方案,但是,由于 BSC 的递归性质,PV 输出中存在显著的稳态振荡。该问题可以通过提出一种混合积分反步控制 (IBSC) 算法来解决,其中提出的积分作用可显著降低 PV 阵列输出在不同温度和太阳辐照度水平下的稳态振荡。同时,在交流阶段,主要挑战是减少由负载参数变化引起的 VSI 输出的稳态跟踪误差和总谐波失真 (THD)。尽管传统的滑模控制 (SMC) 对参数变化具有鲁棒性,但它本质上是不连续的并且继承了过于保守的增益设计。为了解决这个问题,提出了一种基于超扭转控制 (STC) 的动态扰动抑制策略,其中设计了一个高阶滑模观测器来估计负载扰动的影响作为集中参数,然后由新设计的控制律拒绝该参数以实现所需的 VSI 跟踪性能。所提出的控制策略已通过 MATLAB Simulink 验证,其中系统在 0.005 秒内达到稳定状态,并在峰值太阳辐射水平下提供 99.85% 的 DC-DC 转换效率。交流级稳态误差最小化为 0 V,而 THD 分别限制为线性和非线性负载的 0.07% 和 0.11%。
I. 引言 电力电子逆变器在各种工业驱动应用中越来越受欢迎。从技术角度来看,使用电子功率转换器引入了新的挑战性问题,例如拓扑复杂性、额外的功率损耗和电磁干扰 (EMI),从而降低了系统的整体服务质量、效率和稳定性。为了克服这些缺点,研究人员提出了新的控制拓扑或修改现有的拓扑,以提高逆变器端子的可用能量。其中,正弦脉冲宽度调制 (SPWM) 级联多级替代了当前的逆变器拓扑。级联功率设备,从而克服了它们的电压限制并减少了谐波。MLC 拓扑主要有三种:中性点钳位、级联 H 桥和飞跨电容器 (FC)。通常,需要串联连接四到十二个逆变器才能达到所需的输出电压。MLI 设计的一个主要问题是其控制的复杂性。在过去的十五年里,模糊逻辑 (FL) 被成功采用。它主要用于逆变器控制和调制技术,主要用于直流/交流转换器领域。级联功率器件,从而克服了它们的电压限制并降低了谐波。本文提出了基于模糊的级联多电平逆变器,以实现低谐波失真、降低功率损耗、成本效益高、波形清晰以及电压稳定性。使用 MATLAB/SIMULINK 对所提出的方法进行了仿真。
本手稿提出了一种新型的混合人工智能(AI)方法,用于针对电动汽车充电站(EVCSS)专门设计的统一功率质量护发素(UPQC)。的目的是整合多个车辆到网格(V2G)功能,从而减轻与电动汽车(EV)网格集成相关的挑战,并结合分布式能源(DERS)。本手稿中提出的混合技术结合了梯度提升决策树(GBDT)算法和果冻搜索(JS)算法,称为GBDT - JS技术。这种创新的方法涉及利用充电站提供电动汽车充电服务,并促进电动电动机的排放。将UPQC与DER的集成(例如光伏(PV))实施,以降低转换器的功率额定功率和实现功率需求需求。使用UPQC内的初始转换器用于管理直流电流(DC)电压,而第二个转换器则监督电动汽车的功率充电或放电过程。此外,它减轻了电池电压发射的影响。具有车辆到网格功能的UPQC最小化网格的负载压力,从而防止了过度流动的问题。提出的方法调节UPQC转换器以减轻电力质量问题,例如谐波电流和电压下垂。随后,使用MATLAB/SIMULINK操作平台证明了该技术的有效性。GBDT - JS性能的评估涉及与现有技术的比较分析。该评估表明,该提出的方法有效地减轻了功率质量问题,特别减少了总谐波失真(THD),并提供最佳结果。
23 • 总功率输出(桥接负载) – 2 × 100 W,THD+N 为 10% 至 4 Ω TAS5342LA 是一款高性能集成立体声数字放大器功率级,设计用于驱动一个 4 Ω 桥接负载 (BTL),每个通道高达 100 W,具有低谐波失真、低集成噪声和低空闲电流。 – 2 × 80 W,THD+N 为 10% 至 6 Ω – 2 × 65 W,THD+N 为 10% 至 8 Ω– 4 × 40 W,10% THD+N,输入 3 Ω TAS5342LA 具有完整的片上集成保护系统,可保护器件免受可能损坏系统的各种故障情况的影响。这些保护功能包括短路保护、过流保护、欠压保护、过热保护和 PWM 信号丢失(PWM 活动检测器)。• >110 dB SNR(采用 TAS5518 调制器进行 A 加权) 上电复位 (POR) 电路用于消除大多数功率级设计所需的电源排序 • <0.1% THD+N(1 W,1 kHz)。• 支持 192 kHz 至 BTL 输出功率 432 kHz 的 PWM 帧速率,与 • 电阻可编程电流限制电源电压 • 集成自保护电路,包括: – 欠压保护 – 过热警告和错误 – 过载保护 – 短路保护 – PWM 活动检测器 • 独立保护恢复 • 上电复位 (POR) 以消除系统电源排序 • 高效功率级 (>90%),带有 110m Ω 输出 MOSFET • 热增强型封装 44 引脚 HTSSOP (DDV) • 错误报告,符合 3.3 V 和 5.0 V • 与推荐系统设计一起使用时符合 EMI 要求
由于环境条件多变,光伏 (PV) 系统参数始终是非线性的。在多种不确定性、干扰和时变随机条件的发生下,最大功率点跟踪 (MPPT) 很困难。因此,本研究提出了基于被动性的分数阶滑模控制器 (PBSMC),以检查和开发 PV 功率和直流电压误差跟踪的存储功能。提出了一种独特的分数阶滑模控制 (FOSMC) 框架的滑动面,并通过实施 Lyapunov 稳定性方法证明了其稳定性和有限时间收敛性。还在被动系统中添加了额外的滑模控制 (SMC) 输入,通过消除快速不确定性和干扰来提高控制器性能。因此,PBSMC 以及在不同操作条件下的全局一致控制效率是通过增强的系统阻尼和相当大的鲁棒性来实现的。所提技术的新颖之处在于基于黎曼刘维尔 (RL) 分数阶微积分的 FOSMC 框架的独特滑动曲面。结果表明,与分数阶比例积分微分 (FOPID) 控制器相比,所提控制技术可在可变辐照度条件下将 PV 输出功率的跟踪误差降低 81%。与基于被动性的控制 (PBC) 相比,该误差降低 39%,与基于被动性的 FOPID (EPBFOPID) 相比,该误差降低 28%。所提技术可使电网侧电压和电流的总谐波失真最小。在不同太阳辐照度下,PBSMC 中 PV 输出功率的跟踪时间为 0.025 秒,但 FOPID、PBC 和 EPBFOPID 未能完全收敛。同样,直流链路电压在 0.05 秒内跟踪了参考电压,但其余方法要么无法收敛,要么在相当长的时间后才收敛。在太阳辐射和温度变化期间,使用 PBSMC,光伏输出功率在 0.018 秒内收敛,但其余方法未能收敛或完全跟踪,与其他方法相比,由于 PBSMC,直流链路电压的跟踪误差最小。此外,光伏输出功率在 0.1 秒内收敛到参考功率
• 确保设施内使用的变频驱动器 (VFD) 不会导致过度的设施谐波失真是一种良好的工程实践。有关更多信息,请参阅 IEEE 519。• 如果 VFD 和受控电机之间的电缆长度超过 50 英尺,则可能需要在前几个绕组上增加电机绕组绝缘或在逆变器输出端安装 LC 滤波器。• 只要制造商的要求符合适用的电气规范,VFD 就应按照制造商的噪声接地要求接地。• 设施所有者可能需要考虑:由制造商代表启动 VFD、过流跳闸保护、临界频率锁定。• 仅对以下 VFD 安装类型下列出的 HVAC 应用安装 2 马力及以上的变频驱动器将提供规定折扣。其他 VFD 应用可能符合 Central Hudson 定制计划的资格。• 以下 HVAC VFD 应用没有资格使用此应用:o 带有入口导叶的前向曲线风扇;o 变距叶片轴流风扇; o 更换发生故障的 VFD;o 仅用于平衡恒定流量的 VFD;o 控制现有的 2 速冷却塔风扇;o 风扇或泵的 2 速控制;减轻安装过大电机的压力。• 对于冷冻水和加热泵安装,至少 75% 的泵容量必须由 2 通阀控制。• VFD 必须由自动信号控制,以响应变化的空气或水流。受控电机每年必须至少运行 2,000 小时。 • 必须随此申请提交已发布的制造商信息,以证明符合以下每个标准:o 在满载和无惯性的情况下,VFD 控制上的最短 15 毫秒穿越时间o 自动重启o 飞行重启(启动旋转电机,速度搜索)o 欠压跳闸 85% 或更低o 根据驱动马力,最低 3% 在线电抗器或等效装置(扼流圈、隔离变压器)o 满载和全速下最低 95% 驱动效率o 0.95 最小位移功率因数• 零件保修至少一年。
介绍了一种用于 Embraer 190/195 运输类飞机的新型 DC-Link VSCF AC-DC-AC 电力系统转换器。所提出的转换器可以取代现有的基于 CSCF IDG 的传统系统。几架当代生产飞机已经将 VSCF 作为主要或备用电源。过去,较旧的 VSCF 系统存在问题;然而,开关电源电子和数字控制器已经成熟,我们认为现在可以安全地集成并取代现有的为 CSCF AC 发电机供电的恒速液压传动装置。使用 IGBT 功率晶体管进行中等水平的功率转换和相对快速有效的切换。利用 VSCF 进行电力发电、转换、分配、保护和负载管理可提供传统 CSCF IDG 系统所不具备的灵活性、冗余性和可靠性。针对 E190/195 提出的 DC-Link VSCF 系统利用 12 脉冲整流器、降压转换器和 3-w 12 步逆变器(带 DY、YY 和 YD 3-w 变压器)提供多个级别的 3-w 交流和直流电源,即 330/270/28 VDC 和 200/115/26 VAC。使用三个参考交流相位信号和高达 100 kHz 三角载波的传统双极双边载波脉宽调制可用于消除所有偶数和许多奇数超谐波。无源低通滤波器用于消除高次谐波。RL 交流负载与同步和感应交流电机连接时处于活动状态,还包括无源交流负载。总功率因数超过 85%。电压和电流的总谐波失真低于 5%,因此满足 MIL-STD-704F 和 IEEE Std. 519 电能质量标准,同时避免了有源滤波器的需要。使用连续周期调谐方法设计和调谐了几个用于调节同步发电机直流励磁和逆变器组的 PI 和 PID 控制器,以提供所需的性能和反馈回路的稳定性。Mathworks 的 Simulink TM 软件用于电气元件和电路的仿真。模拟了飞机运行的几个关键场景,例如复飞,以评估 VSCF 系统的瞬态行为。
提出了一种用于 Embraer 190/195 运输类飞机的新型 DC-Link VSCF AC-DC-AC 电力系统转换器。所提出的转换器可以取代现有的基于 CSCF IDG 的传统系统。几架当代生产的飞机已经将 VSCF 作为主要或备用电源。过去旧的 VSCF 系统存在问题;然而,开关电源电子和数字控制器已经成熟,我们认为现在可以安全地集成并取代现有的为 CSCF AC 发电机供电的恒速液压传动装置。使用 IGBT 功率晶体管进行中等水平的功率转换和相对快速有效的切换。利用 VSCF 进行电力生成、转换、分配、保护和负载管理提供了传统 CSCF IDG 系统所不具备的灵活性、冗余性和可靠性。针对 E190/195 提出的 DC-Link VSCF 系统利用 12 脉冲整流器、降压转换器和 3-w 12 步逆变器(带 D-Y、Y-Y 和 Y-D 3-w 变压器)提供多个级别的 3-w 交流和直流电源,即 330/270/28 VDC 和 200/115/26 VAC。使用三个参考交流相位信号和高达 100 kHz 三角载波的传统双极双边载波脉宽调制可用于消除所有偶数和许多奇数超谐波。无源低通滤波器用于消除高次谐波。RL 交流负载与同步和感应交流电机相关,并且还包括无源交流负载。总功率因数超过 85%。电压和电流的总谐波失真低于 5%,从而满足 MIL-STD-704F 和 IEEE Std.519 电能质量标准,同时避免了有源滤波器的需要。使用连续周期调谐方法设计和调谐了几个调节同步发电机直流励磁和逆变器组的 PI 和 PID 控制器,以提供反馈回路所需的性能和稳定性。Mathworks 的 Simulink TM 软件用于电气元件和电路的仿真。模拟了飞机运行的几个关键场景,例如复飞,以评估 VSCF 系统的瞬态行为。
DA-250D 规格 双通道功率放大器应使用 D 类电路拓扑,并应可配置为双通道操作。双通道模式下所有通道均驱动时的功率输出应为:4 欧姆时每通道 250W,8 欧姆时每通道 170W。每对通道应可桥接以产生 500 W。总谐波失真 (THD) 应小于 0.1% @ 1 kHz,0.3% (20 至 20,000 Hz)。频率响应应为 20 至 20,000 Hz (± 1 dB)。信噪比应为 100 dB(A 加权)。串扰应为 70 dB(A 加权)。对于电子平衡输入电路的每个输入,输入阻抗应为 10k 欧姆。后面板开关应允许选择 1-2 个通道的桥接操作。后通道输入模式开关应允许选择输入 1 至所有模式,从而将来自输入 1 的信号同时馈送到其他通道。每个输入应具有 3 针凤凰块和 XLR 连接器。后面板输出连接器应为重型 M4 螺丝端子隔离条,适用于铲形接线片或高达 #12 AWG 的裸线。前面板衰减器应凹进以防止意外的电平变化,并且一旦正确设置电平,就可以将其移除并由随附的安全盖替换。前面板应有两组四个 LED 指示灯,用于指示以下情况:输入信号存在(大于 -20 dB)、输出信号存在(大于 1 W @ 8 欧姆负载)、峰值削波和保护电路激活。重量应为 11.02 磅(5 千克)。前面板还应有两个可拆卸的空气过滤器,无需将放大器从机架上卸下即可拆卸进行清洁。内置保护电路应监控电压和电流水平,以尽量减少过载造成的潜在损害,并通过每个通道的继电器在短路、直流偏移或功率放大器散热器工作温度超过 212°F (100°C) 或设备内部工作温度超过 176°F (80°C) 时禁用输出。继电器还应在开启期间将放大器与负载的连接延迟约 2 秒,以防止开启时出现任何噪音。功耗应为 120 W(基于 UL/CSA 标准)和 650 W(额定输出 4 欧姆 x 2 通道),以及 420 W(额定输出 8 欧姆 x 2 通道)。放大器应仅使用一个标准机架空间或 1.75 英寸 (44.5 毫米),其尺寸应为 18.98 英寸 (宽) x 1.73 英寸 (高) x 15.82 英寸 (深) (482 x 44 x 401.8 毫米)。前面板饰面应为黑色阳极氧化铝,外壳饰面应为钢板。放大器应为 TOA 型号 DA-250D。