目的:结直肠癌(CRC)具有较高的死亡率和发病率;但是,CRC细胞不受控制的增殖的机制是未划定的,E3连接酶在癌症中具有至关重要的功能。HERC3曾经被认为是CRC中的重要作用,但是其对CRC细胞增殖和细胞周期的影响是空白的。方法:分析了HERC3与临床特征之间的相关性。进行糖节降水,质谱分析和GST-pull降低,以鉴定HERC3的相互作用蛋白质。通过QRT-PCR,Western印迹和免疫组织化学研究了RPL23a的表达模式及其在HERC3之间的相关性。在细胞增殖和细胞周期方面,进行了体内和体外增益和功能丧失测定和救援实验。通过体内泛素化测定,环己酰亚胺分析和质谱分析来鉴定HERC3和RPL23A之间的泛素化调节机制。GSEA有助于研究RPL23A的潜在功能机理,并通过蛋白质印迹和体内泛素化测定法进行了验证。结果:HERC3的表达从健康个体的结直肠组织逐渐降低到CRC患者的邻近肿瘤组织,以及肿瘤组织和HERC3可以抑制CRC细胞的增殖和G0-G1阶段中的CRC细胞增殖和阻止细胞。RPL23A被认为是HERC3的一个潜在靶标的在CRC中过表达,并且可以用作CRC中的预后生物标志物。RPL23A被认为是HERC3的一个潜在靶标的在CRC中过表达,并且可以用作CRC中的预后生物标志物。RPL23A还可以独立调节细胞周期和细胞增殖,并减弱HERC3对CRC的影响。此外,HERC3与RPL23A直接相互作用,并通过HECT结构域通过K48依赖性方式作为泛素化降解RPL23A的E3连接酶。此外,HERC3可以调节P21的泛素化,并通过调节RPL23A的c-Myc和P21进一步调节蛋白质表达。结论:HERC3控制了CRC增殖,细胞周期并通过直接靶向RPL23A来降解C-MYC/P21轴。
ZN、GL 和 DLRM 为研究的各个方面做出了贡献。ZN、DLRM、DSJ、SDP、GOH 和 AB 进行了原位同步加速器 XCT。ZN 和 DLRM 进行了电解质盘的制备和电池组装。ZN、DLRM、CG 和 XG 进行了在线质谱分析。ZN、DLRM、BH、BL 和 JB 进行了等离子体 FIB 成像。DLRM 和 JB 使用 SIMS 进行了等离子体 FIB 成像。ZN、DLRM、JP、JL 和 DEJA 进行了微悬臂和机械测试的准备。GL、YC 和 CWM 进行了建模。ZN、GL、DLRM、DSJ、RIT、PSG、DEJA、TJM、CWM 和 PGB 讨论了数据。所有作者都对数据的解释做出了贡献。ZN、DLRM、GL、CWM 和 PGB 撰写了
Methods This comparative genomic study included extensively drug-resistant Morganella spp isolates collected between Jan 1, 2013, and March 1, 2021, by the French National Reference Center (NRC; n=68) and European antimicrobial resistance reference centres in seven European countries (n=104), as well as one isolate from Canada, two reference strains from the Pasteur Institute collection (Paris, France), and two来自Bicêtre医院(法国克里姆林 - 比卡特)的可菌素敏感分离株。通过全基因组测序,抗菌敏感性测试和生化测试来表征分离株。也包括来自GenBank(n = 103)的完整基因组进行基因组分析,包括系统发育和核心基因组和抗性的测定。不同物种或亚种之间的遗传距离。通过将遗传分析与脂质A上的质谱分析相结合。
了解催化剂活性位点是未来合理设计优化和定制催化剂的基本挑战。例如,Ce 4 + 表面位点部分还原为 Ce 3 + 以及氧空位的形成对于 CO 2 加氢、CO 氧化和水煤气变换反应至关重要。此外,金属纳米粒子、可还原载体和金属载体相互作用在反应条件下容易演变;因此必须在原位条件下表征催化剂结构以识别活性状态并推断结构-活性关系。在本研究中,分别通过原位定量多模电子断层扫描和原位加热电子能量损失谱研究了 Ni 纳米粒子修饰的介孔 CeO 2 中温度诱导的形态和化学变化。此外,使用带窗口的气室进行原位电子能量损失谱分析,揭示了 Ni 诱导的氢溢出对活性 Ce 3 + 位点形成和整体催化性能增强的作用。
摘要 - 大脑计算机接口(BCI)系统将原始的获得的大脑信号转换为控制外部设备的命令。生物医学信号处理技术的进步已指导脑电图(EEG)信号不仅是脑部疾病的诊断工具,而且是脑电脑接口场中的控制器。在本文中,我们提出了脑电图数据分析,以研究脑电图活动如何随左右图像手动运动而变化,这是通过思想控制机器的一步。在本文中,功率谱分析,脑电图的事件相关潜力和时间频率的特征表明,右手图像降低了左侧和左手图像中的手部面积的活性,可降低大脑右侧的手部面积的活性。结果成功地表明,在基于BCI的运动恢复中可以利用运动图像EEG现象。关键字 - 大脑计算机界面(BCI),脑电图(EEG)信号,运动图像EEG(MI-EEG)。
摘要:在当前的研究工作中,试图合成银纳米颗粒(MA -AGNPS)UTI-将Melia Azedarach的成熟果实提取物进行液化。使用各种表征技术,例如紫外线 - 可见光谱分析,热力学分析(TGA)和扫描电子显微镜(SEM)来确认AGNPS合成。通过紫外线可见光谱跟踪生物补充和颜色变化,而sem con -con -con -con -conmend agnps的尺寸为2 - 60 nm。TGA揭示了合成的AGNP的稳定性。根据抑制区(ZI),最小杀菌性核心和对测试细菌菌株的最小抑制浓度评估了基于Azedarach的AGNP和水果提取物的抗菌潜力,其中较高的NPS是NPS的较高活性(P. eruginosa Zi = 22)。2,2-二苯基-1-紫hydrazyl(DPPH)和(2,2-二苯甲酸 - [3-乙基苯甲酰唑啉]] - 6-硫磺
我们展示了异源多倍体根结线虫Meloidogyne javanica的染色体级基因组组装。我们发现M . javanica基因组主要是异源多倍体,包含两个亚基因组A和B,最有可能起源于两个祖先亲本物种的杂交。使用全长非嵌合转录本、与参考数据库的比较和从头算预测技术对组装进行了注释,并使用祖先k聚体谱分析对亚基因组进行了分阶段。亚基因组B似乎显示染色体重叠群的分裂,虽然亚基因组之间存在大量同源性,但我们还确定了缺乏同源性的区域,这些区域可能在杂交之前或之后在祖先基因组中发生了分化。这种带注释和分阶段的基因组组装为了解这些全球重要植物病原体的起源和遗传学提供了重要资源。
(d AGO)菌株均为各种DNA复制抑制剂,以研究TT AGO是否确实在DNA复制中起作用。受到回旋酶A抑制剂环氧蛋白的抑制剂,TT AGO编码细胞的外观正常,而D前细胞变得伸长并形成纤维。tt ogo对正常表型的恢复仅在cipro伏那霉素的某些浓度下观察到。透射电子显微镜和刺激的发射消耗显微镜表明,在这些环氧蛋白浓度下,由于DOGO细胞中的cat染色性染色体未能使细胞分裂完成(图1)。因此,得出的结论是,当抑制回旋酶A时,TT AGO通过解开夹层染色体来有助于进行性复制。通过共免疫沉淀,然后进行质谱分析,作者表明,即使在DNase I的处理后,TT AGO与参与DNA复制和修复的许多蛋白质相互作用。
激光捕获显微切割 (LCM) 是一种用于从组织切片中选择和获取细胞簇的新方法。一旦捕获,DNA、RNA 或蛋白质就可以轻松地从分离的细胞中提取出来,并通过常规 PCR、逆转录 (RT)-PCR 或聚丙烯酰胺凝胶电泳进行分析,包括蛋白质酶谱分析特定的大分子变化。在 LCM 中,附着在刚性支撑物上的热塑性聚合物涂层 [乙烯醋酸乙烯酯 (EVA)] 与组织切片接触。近红外激光脉冲精确激活微观选择的细胞簇上的 EVA 聚合物,然后将其结合到目标区域。从组织切片上移除 EVA 及其支撑物可获取选定的细胞聚集体以进行分子分析。这种使用平面转移 EVA 薄膜的初始 NIH LCM 方法最近已商业化,并已被证明是一种有效的常规显微切割技术,可用于许多实验室的后续大分子分析 -
摘要CRISPR/CAS9系统最初是从原核生物适应性免疫系统中得出的,已作为有效的基因组编辑工具开发。它可以通过可编程SGRNA与靶DNA的特定结合对染色体DNA进行精确的基因操纵,并且具有内切核酸酶活性的CAS9蛋白将在特定位点减少双链断裂。然而,CAS9是哺乳动物细胞中的一种异物,与引入哺乳动物细胞有关的潜在风险尚不完全了解。在这项研究中,我们对HEK293T细胞中的链球菌CAS9(Spycas9)进行了下拉和质谱分析(MS)分析,并表明大多数Cas9-相关蛋白质由MS鉴定的大多数相关蛋白在核中局部局部。有趣的是,我们进一步发现CAS9蛋白包含编码核仁拘留信号(NODS)的序列。与野生型(WT)Cas9相比,CAS9的点突变变体(MCAS9)较小