摘要 先进的mRNA疫苗在对抗SARS-CoV-2方面发挥着至关重要的作用。然而,由于其稳定性差,目前的大多数mRNA递送平台需要储存在-20 o C或-70 o C下,这严重限制了它们的分布。在此,我们介绍了冻干的SARS-CoV-2 mRNA-脂质纳米颗粒疫苗,其可在室温下储存并具有长期的热稳定性。在体内Delta病毒攻毒实验中,冻干的Delta变异mRNA疫苗成功保护小鼠免受感染并清除病毒。冻干的omicron mRNA疫苗能够引发强大的体液和细胞免疫。在小鼠和老年猴的加强免疫实验中,冻干的omicron mRNA疫苗可有效提高针对野生型冠状病毒和omicron变异体的中和抗体滴度。在人体中,冻干的omicron mRNA疫苗作为加强针也能产生良好的免疫力,且不良事件较少。该冻干平台克服了mRNA疫苗的不稳定性,同时不影响其生物活性,并显著提高了其可及性,特别是在偏远地区。
背景:胶质母细胞瘤(GBM)的治疗一直非常具有挑战性,不仅是由于存在血脑屏障(BBB),而且还因为对耐药性的敏感性。最近,簇状的定期间隔短的短质体重复序列(CRISPR) - 相关蛋白9(CRISPR/CAS9)彻底改变了基因编辑技术,并且能够治疗包括人类肿瘤在内的各种遗传疾病,但缺乏安全且有效的靶向靶向输送系统,尤其是在中枢神经系统中,尤其是在中枢神经系统中(CNS)。方法:构建了脂质聚合物杂化纳米颗粒(LPHNS-CRGD),用于靶向O6-甲基鸟嘌呤-DNA甲基转移酶(MGMT)的CRISPR/CAS9质粒的效率和靶向递送,这是一种药物抗性基因至替莫佐利瘤(TMZ)。聚焦的超声(FUS) - 微泡(MB)用于非侵入性和局部打开BBB,以进一步促进基因在体内递送到胶质母细胞瘤中。在体外和体内评估了基因编辑效率和药物敏感性的变化。结果:成功合成了基因的LPHNS-CRGD,可以保护PCAS9/MGMT免受酶降解。lphns-crGD可以靶向GBM细胞,并通过pCAS9/MGMT的转染以下调MGMT的表达,从而提高了GBM细胞对TMZ的敏感性。MBS-LPHNS-CRGD复合物可以安全地增加BBB的螺旋性,并在体内fus辐照,并促进纳米颗粒在正常肿瘤的小鼠中的肿瘤区域的积累。关键字:CRISPR/CAS9,LPHN,FUS,微泡,胶质母细胞瘤此外,FUS辅助的MBS-LPHNS PCAS9/MGMT -CRGD增强了TMZ在胶质母细胞瘤中的治疗作用,抑制了肿瘤的生长,并具有高水平的生物保护症。结论:在这项工作中,我们构建了用于靶向CRISPR/CAS9系统的LPHNS-CRGD,并与FUS-MBS结合使用以打开BBB。MBS-LPHNS-CRGD递送系统可能是有效靶向基因递送以治疗胶质母细胞瘤的替代方法。
利用人工智能设计功能性有机分子 用户名:Masato Sumida 1,2 Xiufeng Yang 2 日本理化学研究所实验室隶属关系: 1. 先进智能项目中心富士通协作中心 2. 先进智能项目中心目标导向平台技术研究组分子信息学团队
1。环境评估的背景评估水环境的概念已按照腐生方法,多样性指数和生物指数的顺序发展。污染方法以BOD(生物氧的要求)为例,并使用水质成分分析来评估适合水和工业用途的水。在评估人类清洁水的同时,有时候,清洁水流和动植物可以生存的环境的环境不一致。多样性指标可以通过评估组成平衡和总数来评估基因,物种,生态系统等。另一方面,它需要大量的时间和精力,并且不适合在人类彼此相邻的地方(例如Satoyama)的地方进行评估。生物指标测量有关典型物种的信息,并试图评估环境的良好性,最近有些人使用概念(例如完整性和健康)来评估环境。这些概念还抵消了污染方法和多样性指标的缺点。
蛋白质替代疗法、基因组工程和基因重编程。[4,5] 值得注意的是,mRNA 疫苗已获批准用于应对 COVID-19 大流行,并且有助于显著降低由此产生的死亡率。[6,7] 尽管 mRNA 在进一步的药物应用方面具有巨大潜力,但由于其分子量大、多阴离子性质和固有的化学不稳定性,其细胞内递送仍然是一个挑战。脂质纳米颗粒 (LNP) 是可用于有效体内递送外源 mRNA 的最先进技术之一。它们通常由可电离脂质、胆固醇 (chol)、辅助脂质和聚乙二醇 (PEG) 脂质组成,它们负责抑制 mRNA 降解和穿过质膜进入细胞溶胶的运输。可电离脂质是大多数 LNP 的关键成分,因为它们可以通过静电相互作用封装 mRNA。在生理 pH 下,中性电荷可改善体内的药代动力学,而在酸性 pH 下,质子化脂质可促进与内体膜融合并将 mRNA 释放到细胞溶胶中。典型的可电离脂质的头部和尾部基团具有不同的作用。头部基团是带正电的部分,通常具有叔胺,叔胺有多种类型,例如烷基和环状胺。[8] 头部基团决定了 LNPs 的表观 pKa,从而调节其在体内的命运。相反,脂质尾部是疏水部分,负责颗粒的形成。不饱和尾部、[9] 可生物降解尾部、[10,11] 聚合物尾部、[12,13] 和支链尾部 [14,15]
摘要:纳米颗粒(NPS)引起无菌炎症,但潜在的信号通路知之甚少。在这里,我们报告说,人类单核细胞特别容易受到非晶二氧化硅NP的影响,这是通过基于飞行时间(CyTOF)的细胞仪对单细胞基于外周血单核细胞的分析,而NPS的硅烷修饰可减轻其毒性。使用人THP-1细胞作为模型,我们通过纳米级离子质谱法(Nanosims)观察到了二氧化硅NP的细胞内在化,并通过透射电子显微镜证实了这一点。脂质液滴积累也在暴露的细胞中注意到。此外,飞行时间次级离子质谱法(TOF-SIMS)揭示了质膜脂质的特定变化,包括硅胶NP暴露细胞中的磷脂酰胆碱(PC),随后的研究表明,溶血磷脂酰胆碱(LPC)的信号是易溶性的,这表明该信号的流动性是在配体。此外,我们发现硅胶在单核细胞中引起NLRP3炎性体激活,而细胞死亡通过非凋亡,脂质过氧化依赖性机制转化。一起,这些数据进一步了解了我们对无菌炎症机制的理解。关键词:细胞死亡,炎症体,质谱法,单核细胞,二氧化硅纳米颗粒I
旨在减轻症状并减轻疾病进展[3]。然而,这些方法通常只提供暂时的缓解,并与潜在的不利影响相关,强调了对替代治疗策略的需求[4]。干细胞疗法已成为皮肤病学中有前途的途径,提供了组织再生和免疫调节的潜力[5]。皮下脂肪组织衍生的间充质干细胞(ADMSC)由于其可及性,丰度和在各种炎症性和自身免疫性条件下具有治疗潜力而引起了特别的兴趣[6]。临床前研究强调了AD-MSC的免疫调节特性,包括抑制促炎性细胞因子的产生和促进调节性T细胞分化[7]。此外,AD-MSC具有营养和再生能力,分泌了无数的生长因子和促进组织修复和再生的细胞外囊泡[8]。尽管有有希望的临床前数据,但支持AD-MSC治疗在LS管理中有效的临床证据仍然有限[9]。很少有研究探讨了LS中AD-MSC的治疗潜力,现有文献主要包括病例报告和小病例序列[10]。因此,迫切需要进行全面的临床研究,以阐明AD-MSC治疗的治疗功效,安全性和机理见解。
结果:与志愿者相比,结直肠癌患者血清中CDC25B,COX2,RCAS1和FASTIN1的血清IgG显着升高(CDC25B P = 0.002,Cox-2,Cox-2 P = 0.001,fascin1,fascin1和Rcas1 P <0.0001)。针对每种蛋白质鉴定了与人II类MHC结合的表位,并针对肽的T细胞和T细胞鉴定了肽和相应的重组蛋白的特异性,并从人类淋巴细胞中产生,以验证这些蛋白质为人类抗原。某些肽在小鼠和人类之间是高度同源的,在免疫后,小鼠既开发了肽和蛋白质的特异性IFN-分泌细胞对Cdc25b,Cox2和RCAS1的反应,却不是fascin1。与对照相比,用CDC25B或COX2肽免疫的FVB/NJ小鼠对合成元MC38肿瘤的生长显着抑制(p <0.0001)。RCAS1肽疫苗接种没有抗肿瘤作用。 在用AOM治疗的Cdc25b或Cox2肽小鼠免疫后,与对照组相比,用AOM处理的显着较少的肿瘤(P <0.0002),其中50%的小鼠在每个抗原组中保持无肿瘤。 与对照组相比,用Cdc25b或Cox2肽免疫的APC最小小鼠的肠肿瘤较少(分别为p = 0.01和p = 0.02)。RCAS1肽疫苗接种没有抗肿瘤作用。在用AOM治疗的Cdc25b或Cox2肽小鼠免疫后,与对照组相比,用AOM处理的显着较少的肿瘤(P <0.0002),其中50%的小鼠在每个抗原组中保持无肿瘤。与对照组相比,用Cdc25b或Cox2肽免疫的APC最小小鼠的肠肿瘤较少(分别为p = 0.01和p = 0.02)。