摘要:随着质谱成像 (MSI) 在药物研发中的应用越来越广泛,我们有机会开发出结合探索性高性能分析和更高容量、更快靶向 MSI 的分析流程。因此,为了实现更快的 MSI 数据采集,我们提出了利用三重四极杆 (TQ) 质谱分析仪的分析物靶向解吸电喷雾电离质谱成像 (DESI-MSI)。与传统的飞行时间 (TOF) 质谱分析仪相比,评估的平台配置提供了更高的灵敏度,因此有可能生成适用于药物研发的数据。该平台成功运行,采样率高达 10 次扫描/秒,与同类 DESI-TOF 设置上常用的 1 次扫描/秒相比具有优势。更高的扫描速率使得研究内源性脂质物种(如磷脂酰胆碱)和四种口服药物(厄洛替宁、莫西沙星、奥氮平和特非那定)的解吸/电离过程成为可能。这可用于了解解吸/电离过程的影响,从而优化操作参数,与 DESI-TOF 分析或基质辅助激光解吸/电离 (MALDI) 平台相比,提高了脑组织切片中奥氮平和主要奥氮平代谢物羟基奥氮平的化合物覆盖率。该方法可以减少记录信息量,从而将数据集的大小从每个实验高达 150 GB 减少到几百 MB。在案例研究中证明了该方法对绘制药物分布图、药物引起的肾毒性的空间分辨分析以及卵巢肿瘤标本的分子组织学组织分类的适用性,其性能得到了改善。
摘要:腺相关病毒(AAV)是一种广泛使用的基因治疗载体。完整包装的基因组是有效治疗的关键质量属性,是必要的。在这项工作中,使用电荷检测质谱法(CDM)来测量从重组AAV(RAAV)向量提取的感兴趣基因组(GOI)的分子量(MW)分布。将测得的MWS与具有不同的Gois,血清型和生产方法(SF9和HEK293细胞系)的RAAV载体的序列质量进行了比较。在大多数情况下,测得的MW略大于序列质量,结果归因于柜台。但是,在少数情况下,测得的MW明显小于序列质量。在这些情况下,基因组截断是差异的唯一合理解释。这些结果表明,CDM对提取的GOI的直接分析提供了一种快速而有力的工具,可以评估基因组完整性中的基因组完整性。■简介
摘要。气溶胶生成技术扩展了气溶胶质谱法(AMS)的实用性,用于对机载颗粒和液滴的化学分析。但是,标准的雾化技术需要相对较大的液体量(例如,几毫升)和限制其效用的高样品质量。在这里,我们报告了需要低至10 µL样品的微型欺凌AMS(MN-AMS)技术的发展和表征,并且可以通过使用同位素标记的内部标准标准标记的Or- ganic和无机物质的纳米含量水平进行定量(34 sO 34 os 34 os)。使用标准SO,该技术的检测极限分别以0.19、0.75和2.2 ng的硫酸盐,硝酸盐和器官确定。这些物种的分析回收率分别为104%,87%和94%。该MN-AMS技术成功地应用了使用微小颗粒物(PM)采样器收集的过滤器和iM骨骼样品,可在未蛋白质的大气表调节平台上部署,例如未蛋式的空中系统(UASS)和绑扎气球系统(TBSS)。从能源部(DOE)南部大平原(SGP)天文台进行的UAS场运动收集的PM样品的化学组成。与通过共同固定的气溶胶化学物种物种(ACSM)测量的原位PM组成进行了很好的比较。此外,MN-AM和离子色谱(IC)很好地同意硫酸盐和硝酸盐的测量
三十只雄性大鼠(190-210 gm)被随机分为五组,并根据两组放在笼子中,每组包含6只大鼠,如以下。组1,被认为是阴性对照组,给定30天的食物和水。第2组作为糖尿病阳性对照,给定链蛋糕素注射腹腔注射。60 mg/kg B.W.作为单剂量,用食物和水持续15天。第3组,接受链霉菌素的链球菌素(60 mg/kg)用食物和水注射15天,然后每天口服1 mmg/kg治疗15天。第4组,将i.p链霉菌素(60 mg/kg)注射30天。第5组,接受链蛋白酶的链蛋白酶(60 mg/kg)用食物和水注入。然后用forxiga1mg/kg治疗,每天口服管理15天。在实验结束时,所有大鼠均被安乐死,获得了生物化学参数的血液样本。
图 2 LDMS 预浓缩/分离过程机理以及 LDMS-CE-TOF/MS 和 TQ/MS 的分析结果。 (a) 通过扫描和 AFMC 对样品溶液中的 DXd 进行预浓缩。 由于双堆积机制,DXd 被精确聚焦并与生物基质分离。 (b) 普通 CE-TQ/MS(未经任何预浓缩,1 μ M DXd)和 LDMS-CE-TQ/MS(1 nM)的提取离子电泳图;灵敏度提高了 1000 倍。 (c) 对与小鼠肝匀浆混合的 10 nM DXd 和 10 nM MMAE 进行 LDMS-CE-TOF/MS 分析。 DXd 和 MMAE 成功聚焦并与代谢物分离。 (d) LDMS-CE-TQ/MS 分析后的峰面积校准曲线。 R 2 超过 0.999,LOQ 为 420 fM(420 zmol,S/N = 10)。(e)2 pM DXd 与 100 pM DXd- d 5 和小鼠肝匀浆混合的 LDMS-CE-TQ/MS 分析。成功检测到 DXd,峰面积 RSD 为 7.1%,定量准确度为 110%。
1标题2 3 3定量质谱分析分析4阿尔茨海默氏病中脑脊液蛋白生物标志物的定量质谱分析5 6作者7 8 Caroline M. Watson 1,Eric B. Dammer 1,Lingyan Ping 1,Duc M. Duc M. Duong M. Duong 2,Erica Modeste 1,Erica Modeste 1,E. 9 Kathleen Carter 2,E. 9 Kathleen Carter 2,Erik C. B. Blaine R. Roberts 1,2和10 Nicholas T. Seyfried 1,2* 11 12 13隶属关系14 1。埃默里大学医学院神经病学系15 2。埃默里大学医学院生物化学系16通讯作者:Nicholas T. Seyfried博士(nseyfri@emory.edu);詹姆斯·J·拉(James J. Lah),医学博士17博士。 (jlah@emory.edu); Allan I Levey,医学博士。 (alevey@emory.edu)18 19摘要20 21阿尔茨海默氏病(AD)是痴呆症的最常见形式,脑脊液液(CSF)22β-淀粉样蛋白(Aβ),TAU总tau和磷酸化的TAU提供了最敏感和特定的23个生物标记物来诊断。 但是,这些诊断生物标志物并不能反映淀粉样蛋白(A)和TAU(T)病理的AD大脑的复杂变化。 在这里,我们报告了选定的25个反应监测质谱法(SRM-MS)方法,具有同位素标记的标准标准26,用于CSF中的相对蛋白质定量。 生物标志物阳性(AT+)和负(AT-)CSF池27用作质量控制(QC)来评估测定精度。 我们检测到30个QC和133个对照(认知正常,AT),29 127个无症状(认知性正常,+AT+)和130个症状AD(认知性AD(认知性障碍),平均CV的平均CV为〜13%(认知正常),平均CV约为13%(认知正常)。 这证明了SRM-MS的实用程序33,以量化AD阶段的CSF蛋白生物标志物。埃默里大学医学院生物化学系16通讯作者:Nicholas T. Seyfried博士(nseyfri@emory.edu);詹姆斯·J·拉(James J. Lah),医学博士17博士。(jlah@emory.edu); Allan I Levey,医学博士。(alevey@emory.edu)18 19摘要20 21阿尔茨海默氏病(AD)是痴呆症的最常见形式,脑脊液液(CSF)22β-淀粉样蛋白(Aβ),TAU总tau和磷酸化的TAU提供了最敏感和特定的23个生物标记物来诊断。但是,这些诊断生物标志物并不能反映淀粉样蛋白(A)和TAU(T)病理的AD大脑的复杂变化。在这里,我们报告了选定的25个反应监测质谱法(SRM-MS)方法,具有同位素标记的标准标准26,用于CSF中的相对蛋白质定量。生物标志物阳性(AT+)和负(AT-)CSF池27用作质量控制(QC)来评估测定精度。我们检测到30个QC和133个对照(认知正常,AT),29 127个无症状(认知性正常,+AT+)和130个症状AD(认知性AD(认知性障碍),平均CV的平均CV为〜13%(认知正常),平均CV约为13%(认知正常)。这证明了SRM-MS的实用程序33,以量化AD阶段的CSF蛋白生物标志物。可以区分AT+ AT-个体的蛋白质包括SMOC1,GDA,14-3-3 31蛋白质以及参与糖酵解的蛋白质。可以区分认知障碍32的蛋白质主要是神经元蛋白(VGF,NPTX2,NPTXR和SCG2)。34 35背景和摘要36 37阿尔茨海默氏病(AD)在全球范围内影响超过4500万人,使其成为38种常见的神经退行性疾病1(https://wwwww.alz.alz.almedia/media/dia/dia/documents/alzheimers/alzheimers-39
1 Max Planck复杂技术系统动态研究所,德国Magdeburg 39106 2系统微生物学,莱布尼兹生物工程系,莱布尼兹农业工程和生物经济研究所科学,柏林TechnischeUniversität,Ernst-Reuter-Platz 1,10587柏林,德国4研究所4农业和城市生态项目,柏林洪堡大学(IASP),Philippstr。 13,13,10115德国柏林5个生物系统工程部,洪堡大学,伯林大学,阿尔布雷希特 - 阿尔布雷希特--weg 3,3,14195柏林,德国6柏林6号糖科学司,化学科学工程科学学院化学科学,化学,生物技术和健康(CBH)的化学科学学院,鲁斯(CBH)。 21, 10691 Stockholm, Sweden 7 Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany 8 Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany * Correspondence: benndorf@mpi-magdeburg.mpg.de†这些作者对这项工作也同样贡献。Max Planck复杂技术系统动态研究所,德国Magdeburg 39106 2系统微生物学,莱布尼兹生物工程系,莱布尼兹农业工程和生物经济研究所科学,柏林TechnischeUniversität,Ernst-Reuter-Platz 1,10587柏林,德国4研究所4农业和城市生态项目,柏林洪堡大学(IASP),Philippstr。 13,13,10115德国柏林5个生物系统工程部,洪堡大学,伯林大学,阿尔布雷希特 - 阿尔布雷希特--weg 3,3,14195柏林,德国6柏林6号糖科学司,化学科学工程科学学院化学科学,化学,生物技术和健康(CBH)的化学科学学院,鲁斯(CBH)。 21, 10691 Stockholm, Sweden 7 Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany 8 Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany * Correspondence: benndorf@mpi-magdeburg.mpg.de†这些作者对这项工作也同样贡献。Max Planck复杂技术系统动态研究所,德国Magdeburg 39106 2系统微生物学,莱布尼兹生物工程系,莱布尼兹农业工程和生物经济研究所科学,柏林TechnischeUniversität,Ernst-Reuter-Platz 1,10587柏林,德国4研究所4农业和城市生态项目,柏林洪堡大学(IASP),Philippstr。 13,13,10115德国柏林5个生物系统工程部,洪堡大学,伯林大学,阿尔布雷希特 - 阿尔布雷希特--weg 3,3,14195柏林,德国6柏林6号糖科学司,化学科学工程科学学院化学科学,化学,生物技术和健康(CBH)的化学科学学院,鲁斯(CBH)。 21, 10691 Stockholm, Sweden 7 Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany 8 Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany * Correspondence: benndorf@mpi-magdeburg.mpg.de†这些作者对这项工作也同样贡献。Max Planck复杂技术系统动态研究所,德国Magdeburg 39106 2系统微生物学,莱布尼兹生物工程系,莱布尼兹农业工程和生物经济研究所科学,柏林TechnischeUniversität,Ernst-Reuter-Platz 1,10587柏林,德国4研究所4农业和城市生态项目,柏林洪堡大学(IASP),Philippstr。 13,13,10115德国柏林5个生物系统工程部,洪堡大学,伯林大学,阿尔布雷希特 - 阿尔布雷希特--weg 3,3,14195柏林,德国6柏林6号糖科学司,化学科学工程科学学院化学科学,化学,生物技术和健康(CBH)的化学科学学院,鲁斯(CBH)。 21, 10691 Stockholm, Sweden 7 Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany 8 Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany * Correspondence: benndorf@mpi-magdeburg.mpg.de†这些作者对这项工作也同样贡献。Max Planck复杂技术系统动态研究所,德国Magdeburg 39106 2系统微生物学,莱布尼兹生物工程系,莱布尼兹农业工程和生物经济研究所科学,柏林TechnischeUniversität,Ernst-Reuter-Platz 1,10587柏林,德国4研究所4农业和城市生态项目,柏林洪堡大学(IASP),Philippstr。13,13,10115德国柏林5个生物系统工程部,洪堡大学,伯林大学,阿尔布雷希特 - 阿尔布雷希特--weg 3,3,14195柏林,德国6柏林6号糖科学司,化学科学工程科学学院化学科学,化学,生物技术和健康(CBH)的化学科学学院,鲁斯(CBH)。 21, 10691 Stockholm, Sweden 7 Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany 8 Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany * Correspondence: benndorf@mpi-magdeburg.mpg.de†这些作者对这项工作也同样贡献。
摘要:碳水化合物是本质上最丰富的生物分子,特别是在几乎所有植物和真菌中都存在多糖。由于其组成多样性,聚糖分析仍然具有挑战性。与其他生物分子相比,碳水化合物的高通量分析尚未开发。为了解决分析科学中的这一差距,我们开发了一种多重,高通量和定量方法,用于食品中的多糖分析。具体而言,使用非酶促化学消化过程将多糖解散,然后使用高性能液相色谱 - Quadru-飞机飞行时间质谱法(HPLC-QTOF-MS)进行寡糖手指。基于产生的寡糖的丰富性,进行了无标签的相对定量和绝对定量。方法验证包括评估一系列多糖标准和早餐谷物标准参考材料的恢复。9种多糖(淀粉,纤维素,β-葡聚糖,曼南,Galactan,Arabinan,xylan,xyloglucan,chitin)通过足够的准确性(5-25%偏差)和高可重现性成功地定量(2-15%CV)。此外,该方法还用于识别和定量多种食品样品集中的多糖。使用外部校准曲线获得了苹果和洋葱的9种多糖的绝对浓度,其中某些样品在某些样品中观察到了各种差异。■简介本研究中开发的方法将提供互补的多糖级信息,以加深我们对饮食多糖,肠道微生物群落和人类健康的相互作用的理解。
ISO-10993中概述了《医疗设备萃取物和浸润器的监管指南》,“医疗设备的生物评估”,第12、17和18部分,特别是1-3。可提取的测试方法通常提供两个(通常是分开的)目的,并量身定制以适合该特定目的。方法可以设计用于以半定量非目标方式对提取物进行一般筛选。或,可以使用针对特定的“靶向”化学实体评估所选方法性能标准的目标定量方法。尽管在所有情况下都需要高性能的方法,但在所讨论的特定测试文章(和这些物种的定量)中,预期在内源性水平上存在的方法性能与特定的可提取物种仅在目标方法中有目的地建立。筛选方法(非目标)仍然可以使用标准来验证色谱,方法性能,执行半定量,系统适用性(以及更多)。但是,理想地设计了可靠的筛选方法,无论其性质如何,或在进行测试时的任何矩阵中都使用。并且它们旨在最大程度地减少检测极限(与药物药物测定方法不同,在该方法通常不是问题的情况下)。
图2。使用Smaldiprep设备的矩阵应用程序的示意图 - 一种用于MS成像应用中基质沉积的自动化超细雾化器。SMALDIPREP设备可提供低于5μm的晶体尺寸;它使用预定义和可编辑的喷涂方法。对于在此技术说明的上下文中的应用中,将明胶嵌入,处理过的筋膜蠕虫[4]和健康的小鼠脑冷冻(厚度为20μm),并使用Smaldiprep设备用基质喷涂。矩阵特异性和依赖应用程序的方案,以优化利息应用中的点大小和组织类型的结果。在这里,将矩阵2,5-二羟基苯甲酸(2,5-DHB),1,5-二氨基磷灰石(DAN)和α-Cyano-4-羟基霉素酸(CHCA)应用于不同的组织类型和分析问题;有关详细信息,请参阅“结果”部分中的各个图形字幕。