这些标准是与医疗保健市场转型网络 (HMTN) 的医用纺织品工作组合作起草的,旨在提供可持续性标准和指南,解决与欧洲医疗保健领域可重复使用纺织品相关的优先可持续性问题。 1 采购商可以根据自己的政策和可持续性目标自由调整这些标准。 除了广泛而均衡的可持续性标准外,我们还鼓励医疗保健采购商在产品选择中采用最佳价格质量比 (BPQR)。 2 这使得投标能够根据包括与合同目标相关的环境和社会标准的授予标准进行评估。 还必须包括价格或成本标准。 欧盟经济运营商 3 必须遵守欧盟采购医疗器械的相关法规,即《公共采购指令》 - PPD、《化学品 REACH》和《医疗器械法规》 - MDR。 本文件整合了现行立法下的要求。未完全遵守欧盟要求的非欧盟经济运营商应将本文件视为起点,该文件列出了所需的最低标准,代表了在社会、环境和化学要求范围内更全面的生产方式。这些标准的制定将与市场发展和最佳实践保持同步。我们将根据反馈、市场或监管变化以及新创新更新本文件。请将反馈发送至 europe@hcwh.org。
低地球轨道上的卫星主要由光伏模块供电。随着新卫星概念对电力的需求不断增长,太阳能电池必须具有灵活性和超轻性,以降低发射成本。CIGS 薄膜太阳能技术是一种很有前途的候选技术,因为它可以在柔性基板上制造,并且具有高辐射硬度。另一方面,CIGS 的辐射性能较差,会导致高温,从而导致功率损失。CIGS 上的高辐射率涂层已有报道,但尚未解决其对热和电方面的影响。这里我们介绍了硅氧碳氮化物涂层的光学特性及其对用于 DLR 的 GoSolAr 动力帆任务的 CIGS 电池电气参数的影响。我们表明,单层涂层可以将辐射率从 0.3 显著提高到 0.72,同时将光谱损失降至最低,对底层 CIGS 电池的功能影响可忽略不计。我们模拟了涂层对轨道太阳能电池的热影响,并预测电池的最高温度将降低 30 摄氏度,从而显著提高功率。此外,涂层在 8 – 13 μ m 的大气窗口内的发射率为 0.87,使其成为地面太阳能电池非常好的被动辐射冷却器。这种低成本涂层可以替代玻璃,并且该工艺可以扩大到大型 CIGS 模块。该涂层还可以显著提高太阳能模块的功率质量比,从而降低太空应用的成本。
截至 2024 年 3 月 31 日的年度收入是与我们雇用或聘请为顾问的人数相关的关键指标,尽管工作质量比市场份额或收入增长更重要。作为一家专业服务公司,确保与成员数量成比例的收入是集团持续商业成功的关键,营业额的适度增长为我们的成员提供了发展机会。快速增长带来了获取熟练资源并有效部署它们以交付项目的挑战,此外还有通常伴随这种增长的资金压力;如果预计收入减少会持续下去,则需要减少员工人数。截至 2024 年 3 月 31 日的年度收入为 22.02 亿英镑(2023 年:21.63 亿英镑)。税前利润是我们持续财务韧性的关键指标。在我们的项目中产生总利润的能力是我们继续为我们的业务融资而不求助于外部资金、投资于对我们重要的领域以及为我们的成员提供合理繁荣的能力的关键。由于我们的许多项目跨越多个财年,任何一年报告的利润都可能受到一系列因素的影响,但每年经常出现的大规模亏损将是一个需要解决的问题。截至 2024 年 3 月 31 日的年度,税前利润为 4390 万英镑(2023 年:3890 万英镑)。
E-ELT 欧洲极大望远镜 EFT 有效场论 EM 电磁 EMRI 极端质量比螺旋 EoS 状态方程 ET 爱因斯坦望远镜 EWPT 电弱相变 FLRW 弗里德曼-勒梅特-罗伯逊-沃克 FOPT 一级相变 GB 银河双星 GW 引力波 GR 广义相对论 IMBBH 中等质量双黑洞 IMS 干涉计量系统 IR 红外线 KAGRA 神冈引力波探测器 KiDS 千度巡天 K CDM 宇宙常数加冷暗物质 LIGO 激光干涉引力波天文台 LISA 激光干涉仪空间天线 LSS 大尺度结构 MBBH 大质量双黑洞 MBH 大质量黑洞 MCMC 马尔可夫链 蒙特卡罗 MHD 磁流体动力学 NG 南部后藤 PBH 原始黑洞 PISN对不稳定超新星 PLS 幂律敏感性 ppE 参数化后爱因斯坦 PTA 脉冲星计时阵列 RD 辐射主导 QCD 量子色动力学 SGWB 随机引力波背景 SKA 平方公里阵列 SM 粒子物理标准模型 SNR 信噪比 SOBH 恒星起源黑洞 SOBBH 恒星起源双黑洞 TDI 时域干涉测量 UV 紫外
具有周期性微观结构的构建的细胞材料(ACM)通常是在通过增材制造(AM)技术获得的高性能组件中构建的,这是由于其高特定强度和良好的效果。ACM也用于用于较高的表面与质量比以方便利用以增强传热的方法。在这项工作中,提出了一种数值方法,以预测AM获得的ACM的有效疗法电导率(ETC)。该模型基于一般数值均质化方案和对ACM的代表体积元素(RVE)的明确描述。数值分析已经对31 rves的几何形状进行:结果表明,ACM的宏观等在很大程度上取决于RVE的相对密度和几何特征。此外,从rves几何形状的数据库开始,选择了七个配置来设计分级ACM,通过计算机辅助设计与设计兼容的拓扑优化方法基于非均匀理性基础样条型样条超曲面以代表伪型密度纤维,并具有众所周知的固体同位素性材料,并具有损失的方法。尤其是,SIMP方法中使用的惩罚定律被基于物理的惩罚方案取代,该方案通过插值每个RVE拓扑的均质化结果和合适的后加工阶段,以从优化过程的结果中恢复分级ACM而不是结构的分布。在从文献中提取的2D和3D基准问题上显示了所提出方法的效果。
摘要:纳米晶体碳酸钙 (CaCO 3 ) 和无定形 CaCO 3 (ACC) 是越来越受技术关注的材料。如今,它们主要通过在稳定剂存在下使用 CaCO 3 试剂的湿法反应合成。然而,最近发现 ACC 可以通过球磨方解石生产。方解石和/或文石是软体动物壳的矿物相,由 ACC 前体形成。在这里,我们研究了在潜在的工业规模上将废弃软体动物贝壳中的生物源 CaCO 3 (bCC) 转化为纳米晶体 CaCO 3 和 ACC 的可能性。使用来自水产养殖物种的废弃贝壳,即牡蛎 (Crassostrea gigas,低镁方解石)、扇贝 (Pecten jacobaeus,中镁方解石) 和蛤蜊 (Chamelea gallina,文石)。球磨工艺是通过使用不同的分散溶剂和潜在的 ACC 稳定剂进行的。使用了结构、形态和光谱表征技术。结果表明,机械化学过程导致晶体域尺寸减小并形成 ACC 域,它们共存于微尺寸聚集体中。有趣的是,bCC 的行为与地质 CaCO 3 (gCC) 不同,在长时间研磨 (24 小时) 后,ACC 重新转化为结晶相。机械化学处理的 bCC 在不同环境中老化产生了特定物种质量比的方解石和文石混合物,而 gCC 中的 ACC 仅转化为方解石。总之,这项研究表明,bCC 可以产生具有特定物种特征的纳米晶体 CaCO 3 和 ACC 复合材料或混合物。这些材料可以扩大 CaCO 3 已经很广泛的应用领域,从医学到材料科学。■ 介绍
直接聚变驱动器 (DFD) 是一种核聚变发动机,可为任何航天器产生推力和电力。它是一种紧凑型发动机,基于 D-3He 无中子聚变反应,使用普林斯顿场反转配置进行等离子体约束,并使用奇偶校验旋转磁场作为加热方法实现聚变。推进剂是氘,它被聚变产物加热,然后膨胀到磁喷嘴中,产生排气速度和推力。根据任务要求,单个发动机的功率范围可以在 1 - 10 MW 之间,并且能够实现 4 N 至 55 N 的推力,具体取决于所选功率,比冲约为 10 4 s。在这项工作中,我们介绍了使用这种发动机到达和研究太阳系外边界的可能性。目标是在不到 10 年的时间内,携带至少 1000 公斤的有效载荷,前往柯伊伯带及更远的海王星外天体 (TNO),如矮行星鸟神星、阋神星和鸟神星,从而可以执行从科学观测到现场操作等各种任务。所选的每个任务剖面图都尽可能简单,即所谓的推力-滑行-推力剖面图,为此,每个任务分为 3 个阶段:i. 从低地球轨道逃离地球引力的螺旋轨迹;ii. 行星际旅行,从离开影响区到滑行阶段结束;iii. 机动与矮行星会合。图中给出了每次机动的推进剂质量消耗、初始和最终质量、速度和 ∆ V。轨迹分析针对两种情况进行:简化场景,其中 TNO 在黄道平面上没有倾斜,真实场景,其中考虑了真实的倾斜角。此后,研究了多种场景,以达到 125 AU,以便研究太阳磁层的外部边界。我们的计算表明,由 DFD 推进的航天器将在有限的时间内以非常高的有效载荷与推进剂质量比探索太阳系的外部边界,开辟前所未有的可能性。
1 国家生物技术中心,13/5 Qorgalzhyn 高速公路,努尔苏丹,010000 哈萨克斯坦;2 纳扎尔巴耶夫大学工程学院,53 Qabanbay Batyr 大街,努尔苏丹,010000 哈萨克斯坦 * 通讯作者。电话:+7 702 210 88 77。电子邮件:ellina.moon@gmail.com 摘要 在过去的几十年里,纳米粒子因其独特的物理化学性质而引起了化学、生物医学和药学研究的广泛关注。这包括超小尺寸、大表面积、良好的生物相容性和高反应性。特别是,纳米粒子在制药和生物医学领域很有前景,因为它们已被用作药物载体和诊断工具。然而,在将药物输送到目标部位之前,单核吞噬细胞系统很容易检测和清除纳米粒子。延长纳米粒子循环的最广泛方法之一是用聚乙二醇 (PEG) 改性纳米粒子的表面。本文介绍了聚乙二醇化的发生方式,以及各种聚乙二醇化纳米粒子在药物输送中的应用。关键词 纳米粒子;聚乙二醇化;药物输送;单核吞噬细胞系统。© Ellina A. Mun、Balnur A. Zhaisanbayeva,2020 简介 纳米粒子 (NPs) 因其独特的物理化学性质而具有巨大的药物输送潜力,包括其超小尺寸、高反应性和大表面积与质量比,与传统的治疗和诊断剂相比,可以提供显着的优势 [1]。由于这些原因,纳米粒子在过去二十年里引起了生物医学和制药科学的极大兴趣。它们已成功用作药物载体 [2, 3]、诊断工具 [4, 5]、标记和跟踪剂 [6, 7]。已描述了一大批用于生物医学应用的无机纳米材料,包括金、钛、氧化铁和二氧化硅。虽然金已被广泛探索并具有悠久的使用历史,但二氧化硅纳米粒子的定义尚不明确,但前景看好,是药物输送领域近期研究的主题 [8]。二氧化硅纳米粒子价格低廉,易于制备和分离,安全且具有生物相容性,而且其表面易于功能化,因此在体外和体内生物医学纳米技术中都具有持续的作用 [9]。
摘要 - 在国家航空航天及空间管理局(NASA)兰利研究中心(LARC)和马萨诸塞州技术研究所(MIT)太空资源研讨会上进行了调查,可部署空间范围内的遗产,以支持在Nasa Atae Athemis Attemis运动中垂直部署的潜力。本文报告了新的设计开发结果 - 在NASA 2020年2020年大概念挑战的原始演讲之后,对于16.5米高的,紧凑的,紧凑的自我部署的复合塔,旨在支持附近的机器人资产或人类对月球永久阴影地区的探索。可能的应用程序包括垂直太阳能数组和提供科学或工程有效载荷的高度视线,以支持附近的目标在感兴趣的领域运行,这可能很难到达。有用的高架有效载荷包括无线电中继器,遥感和成像,导航和电动束光系统。然而,尽管这些轻巧的滚动臂的高度与质量比具有出色的高度,但它们通常在部署时表现出轴向曲率,从而导致尖端质量相对于塔底座的尖端质量明显的横向侧重负载偏转。这种静态挠度随着塔的高度和尖端质量而增加,不仅限制了塔传递的值,而且危害了其完整性。要开发具有竞争性,轻巧的可部署复合动臂塔,将需要在部署期间和之后纠正静态偏转的能力。值得注意的是,自然偏转几乎完全正常地与动臂横截面的接缝完全正常,但是自然的繁荣尖端横向偏转在本文中,将为MIT / LARC自我培养的复合动型Lunar塔提供一个可部署的Guy电线稳定系统,该综合动臂Lunar塔提供实时测量,在部署期间(部署)和被动(DEPLOYMENT)保持紧张局势,并可以通过启发范围进行测试和替代稳定性船只,并可以用作可重新配置的稳定稳定性的船只,并可以作为可重新配置的平台。使用校准的摄影测量系统,记录了不同配置的动臂相对于不同部署高度处的动臂基础的自然侧向偏转。通过实时测量值,发现张紧的家伙电线可以显着减少可部署的复合动臂在死负荷下的静态尖端偏转,并且可以在一分钟的不到一分钟内抑制动态振荡。还发现,控制权是最需要的,即最接近杠杆臂,最接近偏转方向。对于至少11 m的塔高度,散布器长度至少为60厘米,所有三个臂的差分张力的解决方案均存在,并且原则上提供了足够的控制权限,以纠正或显着减少动臂尖端的偏转。
早上好,贝耶(Beyer)董事长,排名成员巴宾(Babin)和小组委员会成员。我的名字叫罗杰·迈尔斯(Roger Myers)。我是华盛顿州科学院院长R Myers Consulting的所有者,也是华盛顿州航空航天技术创新联合中心主席。我与委员会的罗伯特·布劳恩(Robert Braun)博士一起担任了《人类火星探索太空核推进》委员会的委员会。国家科学院于1863年被国会租用,以向政府就科学技术事务提供建议,后来扩展到包括国家工程和医学学院。这项研究是由NASA的太空技术任务局委托进行的,以评估开发和展示用于火星人类勘探任务的太空核推进系统的主要技术和程序性挑战,优点和风险,包括核热推进(NTP)和核电推进(NTP)和核电推进(NEP)技术方案。具体来说,我们被要求评估提供900次特定脉冲的NTP系统的这些因素,以及提供至少1 MW的电力的NEP系统,其功率质量比基本上要比当前的最新设备更好。此外,推进系统应在2039年准备进行人类任务,往返时间(包括火星表面停留时间)不到750天。我将其称为基线任务。我们的委员会收到了NASA,能源部,几家公司和大学的意见和演讲。我们的临时委员会执行这项工作包括来自行业,能源部,国防部和学术界的经验丰富的代表,我们得到了美国国家学院研究总监Alan Angleman的出色支持。我们在一年中举行了二十多次会议,于2021年2月完成了我们的工作。通过背景,NTP系统在概念上与化学火箭相似,在燃烧室中,燃烧室已被紧凑的,非常高的功率密度核反应堆所取代。为了达到900s所需的特异性脉冲,将氢推进剂通过高温反应器泵送,并加热至至少2700 kelvin的温度。达到这种氢气温度需要核反应堆燃料在约2900 K或以上的温度下运行。反应堆与其他反应堆相比也必须非常迅速:最不到一分钟的开始时间是为了快速达到所需的性能水平。因此,NTP系统需要液体氢的存储和泵送子系统,带有屏蔽的高性能核反应堆以及将反应堆转换为推力的喷嘴。相比之下,NEP系统需要具有较低的温度,缓慢启动的核反应堆,屏蔽,功率转换子系统,以产生电力,一个由大型散热器组成的热排斥子系统,电力电源管理和分配子系统以及电动推进子系统,以及所有的电动推进子系统,所有这些系统都可以成功使用NEP系统。NTP和NEP是具有截然不同的挑战的非常不同的技术。根据我们收到的所有意见,对现有文献的广泛审查以及我们的委员会审议,我们得出了一些共识的发现和建议。我们的报告中提供了所有相关背景和详细信息(请参阅http://www.nap.edu/25977)。为此证词,我将首先讨论NTP系统的关键发现和建议,