光学 MEMS 器件对于激光雷达和 AR 汽车应用越来越重要。准确预测和补偿封装翘曲对于保持精确的光学对准和长期可靠性至关重要。团队必须开发一个预测模型来模拟动态热分布期间附着在 PCB 基板上的芯片的翘曲/变形。
X-ON Electronics 最大的电气和电子元件供应商 点击查看 ESD 抑制器/TVS 二极管类别的类似产品: 点击查看 SCME 制造商的产品: 其他 类似产品如下:
390 Interlocken Crescent, Suite 500 • Broomfield, CO 80021 USA | 303-530-1925 sierraspace.com/spaceflight-hardware-catalog | 电子邮件:spaceapps@sierraspace.com 警告 – 本文档不包含《国际武器贸易条例》(ITAR)或《出口管理条例》(EAR)所定义的技术数据或技术。本文讨论的产品和技术的出口、销售和提供均需获得美国政府的批准。
390 Interlocken Crescent, Suite 500 • Broomfield, CO 80021 USA | 303-530-1925 sierraspace.com/spaceflight-hardware-catalog | 电子邮件:spaceapps@sierraspace.com 警告 – 本文档不包含《国际武器贸易条例》(ITAR)或《出口管理条例》(EAR)所定义的技术数据或技术。本文讨论的产品和技术的出口、销售和提供均需获得美国政府的批准。
摘要 焊料的润湿性对于实现电子元件和印刷电路板 (PCB) 之间的良好可焊性非常重要。锡 (Sn) 镀层被广泛用于促进焊料在基板上的润湿性。然而,必须考虑足够的锡镀层厚度才能获得良好的润湿性和可焊性。因此,本研究调查了电子引线连接器的锡镀层厚度及其对润湿性和电连接的影响。在电子引线连接器表面应用了两种类型的锡镀层厚度,~3 μm 和 5 μm。研究发现,~3 μm 的薄锡镀层厚度会导致电连接失败,并且焊点润湿性和可焊性不足。5 μm 的较厚锡镀层厚度表现出更好的润湿性和可焊性。此外,电连接也通过了,这意味着较厚的锡镀层厚度提供了良好的焊点建立,从而带来了良好的电连接。还观察到,较厚的锡镀层厚度实现了更好的焊料润湿性。场发射扫描电子显微镜 (FESEM) 的结果表明,对于较薄的锡镀层厚度 (~3 μm),引线连接器表面的金属间化合物 (IMC) 层生长被视为异常,其中 IMC 层被消耗并渗透到锡涂层的表面。这导致薄锡镀层与焊料的可焊性较差,无法形成焊点。本研究的结果有助于更好地理解考虑足够的锡镀层厚度的重要性,以避免锡镀层处的 IMC 消耗,以及更好的润湿性、可焊性和焊点质量,这对于表面贴装技术 (SMT) 尤其适用于电子引线连接器应用。
表示芯片与环境之间的接触面。对于两种类型的 SMD 封装系列,可以使用两种类型的引线框架精加工:后镀和预镀。对于后镀系列(即裸铜/银点),电镀工艺是强制性的,以确保封装在印刷电路板 (PCB) 上的可焊性。对于预镀系列,由于多层精加工结构(例如 NiPdAu)可以跳过电镀工艺,从而保留封装在 PCB 上的可焊性,从而增强
常州银河世纪微电子有限公司(GME)保留对本文中任何产品信息(版权所有)进行更正、修改、改进或其他更改的权利,恕不另行通知。GME 不承担因本文所述任何产品的应用或使用而产生的任何责任;也不转让其专利权或他人权利下的任何许可。
瑞萨电子的四方扁平无引线 (QFN) 封装系列产品是一种相对较新的封装概念,目前正在快速发展。该封装系列包括通用版本 QFN,以及 TQFN、UTQFN 和 XQFN 等较薄版本。该系列的引线间距为 0.4 毫米及以上。四方扁平无引线的一个子集是双面类型(4 个侧面中只有 2 个有引线),其中包括 DFN、TDFN、UTDFN 和 XDFN 等版本。在本文档中,术语 QFN 代表所有系列选项。该系列具有多种优势,包括降低引线电感、小尺寸近芯片级封装、薄型和轻重量。它还使用周边 I/O 焊盘来简化 PCB 走线布线,而裸露的铜芯片焊盘技术可提供良好的热性能和电气性能。这些特性使 QFN 成为许多新应用的理想选择,这些应用对尺寸、重量以及热性能和电气性能都很重要。
摘要:本文致力于研究电子设备的物理可靠性。它包括对印刷电路板上表面安装和嵌入式组件的冷却效率的比较热分析。构建了带有表面组件的印刷电路板热分布的模拟有限元模型。实验证实了建模结果的客观性。然后根据安装方法(表面和嵌入式)和冷却方法(自然和强制,不同气流速度)分析了组件的温度。结果表明,在自然对流下,嵌入式组件的温度低于表面安装组件的温度,在大多数情况下,在强制对流下(强制冷却的气流速度低于 16 m
各种应用(例如太空应用)对高功率密度、高效率电子设备的需求日益增加。高功率密度要求在封装层面进行有效的热管理,以确保工作温度保持在安全的工作范围内,避免设备早期故障。芯片粘接(芯片和法兰之间的粘合层)一直是热瓶颈,依赖于导热率相对较低的共晶焊料。正在开发先进的高导热率芯片粘接材料,包括烧结银和银环氧树脂,以解决这一问题。然而,这些新材料的热导率通常以其块体形式进行评估;体积热导率可能无法代表实际应用中较低的实际“有效”热导率,这也受到界面和空隙的影响。在本文中,频域热反射已调整为在低频下运行,具有深度灵敏度,可测量夹在芯片和法兰之间的芯片粘接层的热导率。