“奇怪的金属”具有电阻率,具体取决于降低到低t的温度,这是凝结物理学的长期难题。在这里,我们考虑了通过现场哈伯德相互作用和有限限制的自旋 - 旋转相互作用的静脉自旋1 /2 fermions的晶格模型。我们表明,通过电荷闪光与旋转玻璃相熔化相关的量子临界点显示非fermi液体行为,局部自旋动力学与Sachdev-ye-Kitaev模型家族的局部自旋动力学相同。这扩展了先前在SU(M)对称模型的巨大极限上建立的量子自旋液体动力学,以对具有SU(2)Spin-1 /2电子的模型。值得注意的是,量子临界方案还具有与T线性散射速率相关的Planckian线性电阻率和与边缘费米液体现象学一致的电子自我能源的频率依赖性。
集体自旋动力学在自旋晶格模型中起着核心作用,例如量子磁性的海森堡模型[1],Anderson pseudospin模型超导性[2]和Richardson-Gaudin模型的配对模型[3]。这些模型已在离散系统中进行了模拟,包括离子陷阱[4-6],量子气显微镜[7]和腔QQ的实验[8],这些[8]可实现单位分辨率。相比之下,弱相互作用的费米气体(WIFG)为在准连续系统中实现旋转晶体模型提供了强大的多体平台。在几乎无碰撞状态中,单个原子的能量状态在实验时间尺度上保存,在能量空间中创建了长期寿命的合成拉力[9],这在强烈相互作用的方向上是无法实现的。这个能量晶格模拟了集体的海森伯格汉密尔顿人,具有可调的远距离相互作用[10-17]和可调节的各向异性[18]。在这项工作中,我们展示了能量分辨自旋相关性的测量,这些相关性提供了能量空间自旋晶格中横向自旋动力学的物理直观图片。此方法可以使微观介绍量子相变的特征和宏观特性(例如磁化)的特性的特征。在具有集体海森堡汉密尔顿的多体旋转晶格中,随着相互作用强度的提高,依赖站点依赖性的连接和站点对站点相互作用之间的相互作用导致向自旋状态的过渡,从而导致大型总横向自旋。使用总横向磁化作为顺序参数,已经在40 K的WiFG中观察到了此转变。通过我们的能量分辨测量值提供了对自旋锁定过渡的更多信息,这说明了局部低能和高能亚组中横向自旋成分之间强大关系的出现以及这些
摘要 本文总结了在以 s 通道中的介质粒子交换为特征的理论模型背景下寻找费米子暗物质候选者的工作。所考虑的数据样本包括大型强子对撞机在其第 2 次运行期间以√ s = 13 TeV 的质心能量进行的 pp 碰撞,由 ATLAS 探测器记录,对应能量高达 140 fb − 1。结果的解释基于简化模型,其中新的介质粒子可以是自旋为 0,与费米子进行标量或伪标量耦合,也可以是自旋为 1,与费米子进行矢量或轴矢量耦合。排除限是从各种搜索中获得的,这些搜索的特点是最终状态以共振方式产生标准模型粒子,或产生与大量缺失横向动量相关的标准模型粒子。
摘要 本文总结了在以 s 通道中的介质粒子交换为特征的理论模型背景下寻找费米子暗物质候选者的工作。所考虑的数据样本包括大型强子对撞机在其第 2 次运行期间以√ s = 13 TeV 的质心能量进行的 pp 碰撞,由 ATLAS 探测器记录,对应能量高达 140 fb − 1。结果的解释基于简化模型,其中新的介质粒子可以是自旋为 0,与费米子进行标量或伪标量耦合,也可以是自旋为 1,与费米子进行矢量或轴矢量耦合。排除限是从各种搜索中获得的,这些搜索的特点是最终状态以共振方式产生标准模型粒子,或产生与大量缺失横向动量相关的标准模型粒子。
在量子多体系统中,相互作用在信息扰乱的出现中起着至关重要的作用。当粒子在整个系统中相互作用时,它们之间的纠缠会导致量子信息快速而混乱地传播,通常通过海森堡图中算子尺寸的增长来探测。在这项研究中,我们探索当粒子仅通过一般空间维度中的单个杂质相互作用时,算子是否会发生扰乱,重点关注具有空间和时间随机跳跃的费米子系统。通过将算子的动力学与具有源项的对称排斥过程联系起来,我们证明了在调整三维费米子的相互作用强度时存在逃逸到扰乱的转变。作为比较,除非跳跃变得足够长距离,否则较低维度的系统已被证明会在任意弱的相互作用下扰乱。我们的预测通过每个站点具有单个马约拉纳费米子的布朗电路和具有较大局部希尔伯特空间维度的可解布朗 SYK 模型得到验证。这表明了具有空间和时间随机性的自由费米子系统的理论图像的普遍性。
辐射的粒子性质:康普顿效应。粒子的波性质:de Broglie假设,物质波及其特性,海森堡的不确定性原理:其物理意义,应用。量子力学:波函数及其特性,独立的Schrödinger波程,Schrödinger波方程的应用,自由电子理论:经典自由电子理论的失败,量子自由电子理论,费米能,费米能,费米因子,状态密度,量子自由电子理论的优点。振动理论:自由振动,阻尼,强制振动,超声波,相对论,激光理论:爱因斯坦的同系,能量密度的表达,红宝石,He-ne激光器和应用,应用,光学纤维及其应用,应用及其应用,介电材料:介电材料:偏振材料,构造材料,元素,元素,超级构造,超级辅助,超级辅助。
在半完整的最低兰道水平上,Halperin-Lee-Lee读取的复合材料费米斯是一个引人入胜的金属相,它是从电子角度出发的强烈相关的“非弗里米液体”。值得注意的是,实验发现,随着量子井的宽度增加,该状态将过渡到分数量子厅状态,自从三十多年前发现以来,其起源一直是一个重要的难题。我们使用系统的变分框架进行详细且准确的定量计算,以配合复合费米子的配对,这些框架紧密模仿了Bardeen-Cooper-Schrieffer超导性的理论。我们的计算表明,(i)随着量子 - 孔宽度的增加,占量子的最低对称子带的单组分复合材料费米·费米(Fermi Sea)将不稳定的不稳定性进入单组P波 - 复合材料的配对状态; (ii)量子孔宽度 - 电子密度平面中的理论相图与实验非常吻合; (iii)量子井的电荷分布中有足够的不对称性破坏了分数量子霍尔的效应,如实验上所观察到的; (iv)两个组件331状态在能量上比单组分配对状态的好处。在四分之一填充的最低兰道水平的宽量子井中也可以看到分数量子大厅效应的证据;在这里,我们的计算表明复合费米子的F波配对状态。提到了各种实验意义。我们进一步研究了等于一个的填充因子的最低兰道水平的玻色子,并表明复合费米子的P波配对不稳定性是携带单个涡流的玻色子,对于短范围以及库仑的相互作用,与精确的焦点研究相一致。通过实验的复合 - 弗里米式 - 贝尔·索菲夫方法的一般一致性为复合feermion配对的概念提供了支持,这是在均匀施加剂纤维效果下的分数量子响应效应的主要机制。
要了解电荷密度波(CDW)阶段内基于V的Kagome金属中的多阶段过渡,我们专注于“混合型”费米表面的影响,因为它在CDW状态下在“纯型” Fermi表面上完好无损。在混合型费米表面,中等自旋相关性上发展,我们揭示了均匀(q = 0)键顺序是由paramagnon干扰机制引起的,这是由Aslamazov-larkin顶点校正描述的。主要的解决方案是E 2 G-对称性命名秩序,其中可以任意旋转主管。另外,我们获得了A 1 g式对称顺序,该顺序导致晶格常数的变化而没有对称性破裂。可以通过弹性测量值观察到q = 0处的预测的E 2 g和1 g通道的流动。这些结果可用于了解2×2 CDW相内的多阶段过渡。目前的理论具有一般性的意义,因为各种Kagome晶格系统中存在混合型费米表面(带有多边形货车爱好奇异性)。