b'magic-角角扭曲的双层石墨烯可容纳各种有趣的物质状态,包括非常规的超导状态。但是,这种材料可以形成全新的物质状态吗?在本次演讲中,我将讨论两种不同类型的电子冷凝物的可能出现,它们超出了BCS耦合范式。这些是由典型的四元素形成的冷凝物,在电子对之间没有相干性,而是对成对对之间的相干性。通过使用大型蒙特卡洛模拟在魔术角扭曲的低能有效模型[1]中,我们表明,取决于超导地面状态,费米式四倍体置置供应量可以作为遗传相吻合。由四个破坏时间逆转对称性的电子形成,通常出现在超导过渡上方[2]。相反,如果基态是列明超导体,则我们的数值模拟表明,该系统在正常金属相中熔化之前表现出电荷4E相[3]。这表明扭曲的双层石墨烯是稳定和观察这些新型量子状态的理想平台。
费米子多体量子系统的数值建模介绍了各个研究领域的类似challenges,需要使用通用工具,包括现状的机器学习技术。在这里,我们介绍了Solax,这是一个python库,旨在使用第二个量化的形式主义来计算和分析费米子量子系统。Solax提供了一个模块化框架,用于构建和操纵基础集,量子状态和操作员,促进电子结构的模拟并确定有限尺寸的Hilbert空间中的多体量子状态。库集成了机器学习能力,以减轻大量子群中希尔伯特空间尺寸的指数增长。使用最近开发的Python库Jax实现了核心低级功能。通过将其应用于单个杂质Anderson模型的应用,为研究人员提供了一种灵活而强大的工具,可用于应对各种领域的多体量子系统的挑战,包括原子物理学,量子化学和凝结物理学。
该模型的厄米性保证了具有实特征值的能量守恒,但当量子系统与其环境交换粒子和能量时,该模型的厄米性就会失效。这种开放的量子系统可以用非厄米哈密顿量有效地描述,为量子信息处理、弯曲空间、非平凡拓扑相甚至黑洞提供了重要的见解。然而,许多关于非厄米量子动力学的问题仍未得到解答,尤其是在高维空间中。
“奇怪的金属”具有电阻率,具体取决于降低到低t的温度,这是凝结物理学的长期难题。在这里,我们考虑了通过现场哈伯德相互作用和有限限制的自旋 - 旋转相互作用的静脉自旋1 /2 fermions的晶格模型。我们表明,通过电荷闪光与旋转玻璃相熔化相关的量子临界点显示非fermi液体行为,局部自旋动力学与Sachdev-ye-Kitaev模型家族的局部自旋动力学相同。这扩展了先前在SU(M)对称模型的巨大极限上建立的量子自旋液体动力学,以对具有SU(2)Spin-1 /2电子的模型。值得注意的是,量子临界方案还具有与T线性散射速率相关的Planckian线性电阻率和与边缘费米液体现象学一致的电子自我能源的频率依赖性。
人们普遍认为,量子力学中只有两种类型的粒子交换统计数据,即费米子和玻色子,二维中的任意子除外 1–5 。原则上,第二种例外被称为准统计数据,它延伸到二维之外,曾被视为 6 但被认为在物理上等同于费米子和玻色子 7–9 。本文我们表明,物理系统中可以存在与费米子或玻色子都不等价的非平凡准统计数据。这些新型全同粒子遵循广义不相容原理,从而产生不同于任何自由费米子和玻色子的奇异自由粒子热力学。我们通过开发准粒子的第二种量化来制定我们的理论,该量化自然包括完全可解的非相互作用理论并结合局部性等物理约束。然后,我们构建了一维和二维的精确可解量子自旋模型系列,其中自由准粒子以准粒子激发的形式出现,它们的交换统计数据可以在物理上观察到,并且与费米子和玻色子明显不同。这表明凝聚态系统中可能存在一种新型准粒子,而且从更推测的角度来看,可能存在以前未考虑过的基本粒子类型。
量子信息和量子多体物理学的一个特别有趣的接口是研究量子电路,它代表量子粒子或材料物理学中系统的(幺正)时间演化。这些电路最基本的形式是“砖墙”电路,其属性由代表墙上一块砖的 2 量子比特门的选择决定。这种类型的研究通常选择两种极端选择之一:要么假设随机选择 2 量子比特幺正([ 1 ] 及其参考文献),要么相反,选择一个结构化的 2 量子比特门,从而对幺正砖墙 (UBW) 电路进行一定程度的分析控制。事实上,如果将 2 量子比特门选为满足杨-巴克斯特恒等式的所谓 R 矩阵,则可以安排相应的 UBW 电路,使其作为算子与大量守恒电荷进行交换。请参阅 [ 2 – 4 ],其中提出并分析了此过程;[ 5 – 7 ],其中研究了此类电路以及与“可积 trotterization”相关的一系列物理现象。参考文献 [ 8 ] 特别将这些想法应用于 XXX 可积自旋 1/2 海森堡磁体的 R 矩阵,并分析了其守恒电荷,包括解析分析和量子计算硬件上的实现。我们指出了利用类似概念的其他实验 [ 9 , 10 ]。
在从头算电子结构模拟中,费米子到量子比特的映射表示从费米子问题到量子比特问题的初始编码步骤。这项工作引入了一种物理启发的映射构建方法,可在模拟感兴趣的状态时显着简化纠缠要求。电子激发的存在驱动了我们映射的构建,从而减少了量子比特空间中目标状态的相关性。为了对我们的方法进行基准测试,我们模拟了小分子的基态,并观察到与使用传统映射的先前研究中的经典和量子变分方法相比,我们的性能有所增强。特别是在量子方面,我们的映射需要减少纠缠层数量,以实现 LiH、H 2 、( H 2 ) 2 、H ̸= 4 拉伸和苯的 π 系统的精度,使用 RY 硬件高效的假设。此外,我们的映射还为 N 2 分子的密度矩阵重正化群算法提供了增强的基态模拟性能。
量子模拟模仿一个量子系统与另一个人工组织的量子系统(即量子模拟器)的演化[1]。具有量子比特的数字量子模拟器可以对由各种粒子(如自旋、费米子和玻色子)组成的任意量子系统进行精确或近似编码,具体取决于粒子的性质。量子比特可以通过多种物理系统实现,如捕获离子[2,3]、核磁共振(NMR)[4,5]、超导电路[6,7]、量子点[8]和光子[9]。因此,无论模拟器的物理性质如何,我们都可以使用适当的量子比特编码协议用数字量子模拟器模拟任何量子系统。在各种多粒子量子系统中,玻色子系统被认为从数字量子模拟中受益匪浅。 Knill、Laflamme 和 Milburn (KLM) 证明后选择线性光学能够进行通用量子计算 [10]。此外,Aaronson 和 Arkhipov [11] 提出的玻色子采样也是证明量子器件计算优越性的有力候选者。玻色子采样问题被认为属于经典的难采样问题。受非相互作用玻色子系统计算能力的启发,提出了几种玻色子到量子比特编码 (B2QE) 协议,以使用数字量子计算机模拟玻色子问题 [12-18]。大多数研究直接使用 Fock 态的一元或二元量子比特表示作为量子比特编码协议,将玻色子产生和湮灭算子离散化。参考文献 [15] 提出了一种用于线性和非线性光学元件的数字量子模拟方法。参考文献[ 17 ] 基于文献 [ 19 ] 开发的玻色子-量子比特映射,使用 IBM Quantum 模拟了束分裂和压缩算子。所需资源(例如量子比特和门的数量)因编码协议而异。文献 [ 18 ] 比较了不同编码协议之间的资源效率。在本文中,我们结合 Shchesnovich [ 20 ] 分析的玻色子-费米子对应关系和费米子到量子比特编码 (F2QE) 协议 [ 21 , 22 ],提出了一种替代的多玻色子数字模拟方法。具体而言,我们的协议将玻色子态转换为具有内部自由度的费米子态,然后通过 F2QE 协议(Jordan-Wigner (JW) 变换)将其转换为量子比特态。在我们的模拟模型中,具有 M 个 N 量子比特束的量子电路可以模拟 M 模式下 N 个玻色子的数量守恒散射过程。我们的协议总结如图 1 所示。我们的协议最显著的优势是,它可以使用量子比特数的直接扩展来有效地模拟非理想的部分可区分玻色子,即具有内部自由度的玻色子。作为概念证明,我们使用我们的协议生成了 Hong-Ou-Mandel (HOM) 倾角 [ 23 ]。HOM 效应在光量子系统中非常重要,它为线性光量子计算系统中的逻辑门提供基本资源。参考文献 [ 24 ] 讨论了 HOM 效应与基于量子比特的 SWAP 测试之间的正式联系。为了模拟 HOM 倾角,我们需要一种方法来为光子添加内部自由度。在我们的例子中,通过将量子比特数增加两倍就可以轻松实现,这表明我们的协议适合模拟部分可区分的玻色子。我们使用 IBM Quantum 和 IonQ 云服务验证了电路的有效性。本文结构如下:第 2 部分介绍我们的数字玻色子模拟协议。在回顾了玻色子-费米子变换协议之后,我们展示了如何将此变换与 JW 变换相结合进行数字玻色子模拟。在第 3 部分中,我们将模型应用于 HOM 倾角实验。我们用一个八量子比特电路模拟双光子部分区分性。最后,第 4 部分总结我们目前的工作并讨论其未来可能的扩展。
马约拉纳零模式 (MZM) 是拓扑保护量子计算硬件的有希望的候选者,然而它们的大规模使用可能需要量子纠错。马约拉纳表面码 (MSC) 已被提议实现这一目标。然而,许多 MSC 属性仍未得到探索。我们提出了一个统一的 MSC“扭曲缺陷”框架——编码量子信息的任意子类对象。我们表明,MSC 中的扭曲缺陷可以编码两倍于基于量子位的代码或其他 MSC 编码方案的拓扑保护信息量。这是因为扭曲同时编码了逻辑量子位和“逻辑 MZM”,后者增强了微观 MZM 可以提供的保护。我们解释了如何使用逻辑量子位和逻辑 MZM 执行通用计算,同时可能使用比其他 MSC 方案少得多的资源。所有 Clifford 门都可以通过编织扭曲缺陷在逻辑量子位上实现。我们介绍了基于格子手术的逻辑 MZM 和逻辑量子位计算技术,实现了 Clifford 门的效果,且时间开销为零。我们还表明,逻辑 MZM 可能会在足够低的准粒子中毒率下改善空间开销。最后,我们介绍了一种新颖的 MSC 横向门模拟,通过编织微观 MZM 实现小代码中的编码 Clifford 门。因此,MSC 扭曲缺陷为容错量子计算开辟了新途径。
通过精确数值求解时间相关多玻色子薛定谔方程,研究了 Tonks-Girardeau 极限下强相互作用一维玻色子的动态费米子化。我们确定动态费米子化时单体动量分布接近理想费米气体分布。二体层面的测量进一步补充了这一分析。二体层面的动态费米子化应推断为二体关联对角线上存在明显的关联洞。对强相互作用玻色子的二体动量分布的研究清楚地表明,对角线上的模式在费米子化时不会消失。二体局域和非局域关联也将费米子化玻色子与非相互作用费米子清楚地区分开来。进一步利用信息论的适当度量,即众所周知的 Kullback-Leibler 相对熵和 Jensen-Shannon 散度熵,讨论了两个系统之间的可区分性程度。我们还观察到,对于强关联玻色子,高体密度具有非常丰富的结构,而非相互作用的费米子不具有二体以外的任何高阶关联。