图S8。 全球变化应力源的全球分布超过> 50%阈值(R 2 = 0.86)和POC(R 2 = 0.82),烷烃(R 2 = 0.87),酰胺(R 2 = 0.88)和多糖化合物(R 2 = 0.88)(R 2 = 0.90)。 使用13个单独的全球变化应力源和环境因素(例如地理位置(距离赤道和高程),植被(植物覆盖物和NDVI)以及土壤属性(细纹和土壤pH)等环境因素, 使用。 在我们的研究中没有由环境条件代表的高不确定性和/或区域的位置被白色掩盖。图S8。全球变化应力源的全球分布超过> 50%阈值(R 2 = 0.86)和POC(R 2 = 0.82),烷烃(R 2 = 0.87),酰胺(R 2 = 0.88)和多糖化合物(R 2 = 0.88)(R 2 = 0.90)。使用13个单独的全球变化应力源和环境因素(例如地理位置(距离赤道和高程),植被(植物覆盖物和NDVI)以及土壤属性(细纹和土壤pH)等环境因素, 使用。 在我们的研究中没有由环境条件代表的高不确定性和/或区域的位置被白色掩盖。使用。 在我们的研究中没有由环境条件代表的高不确定性和/或区域的位置被白色掩盖。使用。在我们的研究中没有由环境条件代表的高不确定性和/或区域的位置被白色掩盖。
摘要:气候模型代表热带风暴轨迹的能力对于提供有用的预测至关重要。在先前的工作中,发现北半球的热带风暴轨迹的表示已从耦合模型比较项目(CMIP)的第5阶段改善。在这里,我们通过将仅大气模拟(AMIP6)与历史库型模拟(CMIP6)进行了对比,从而研究了CMIP第6阶段模型中的剩余和持久偏差。对AMIP6和CMIP6模拟的比较表明,冬季跨北部Paci -fean的耦合模拟中海面温度(SST)的偏见改变了大气温度梯度,这与风暴轨迹的赤道偏置有关。在北大西洋中,旋风在耦合的模拟中没有足够的杆子传播,该模拟部分是由格陵兰岛南部的冷SST驱动的,从而减少了潜在的热量。在夏季,中亚和藏族高原的过度加热会降低当地的斜压性,导致更少的气旋形成并从中国东部传播到耦合和大气中的模拟物中。当规定SST时,耦合模型中描述的几种偏差大大减少。例如,北极风暴轨迹的赤道偏置显着减少。然而,在CMIP6和AMIP6中,其他偏见都显而易见(例如,夏季东亚的轨道密度密度和循环发生的持续降低)与其他过程有关(例如,土地表面温度)。
对于某些组织来说,这种紧迫感已开始转化为行动。例如,法国石油和天然气公司TotalEnergies已宣布计划在2030年之前的7 GW到2020年的安装可再生发电能力100GW。1个组织(例如Enel和Eni)正在从事绿色氢项目。 2壳,赤道和总能量正在共同致力于捕获和存储北海的碳排放,这是一个名为“北极光”的项目的一部分。 3德国电力公司E.On已与苏黎世保险合作推出了为电动汽车司机推出的保险产品,而BP已向Iotecha投资了700万美元,作为其计划到2030年建立70,000个公共电动汽车收费站的一部分。。1个组织(例如Enel和Eni)正在从事绿色氢项目。2壳,赤道和总能量正在共同致力于捕获和存储北海的碳排放,这是一个名为“北极光”的项目的一部分。 3德国电力公司E.On已与苏黎世保险合作推出了为电动汽车司机推出的保险产品,而BP已向Iotecha投资了700万美元,作为其计划到2030年建立70,000个公共电动汽车收费站的一部分。5个能源平台也见证了浓厚的兴趣。西班牙能源公司Repsol提供了一种解决方案,该解决方案将屋顶太阳能发电机(屋顶工)与消费者(匹配者)连接起来。6
沿岸陷波 (CTW) 承载着海洋对边界强迫变化的响应,是沿岸海平面和经向翻转环流的重要机制。受西部边界对高纬度和公海变化的响应的启发,我们使用线性正压模型来研究科里奥利参数 (b 效应)、海底地形和海底摩擦的纬度依赖性如何影响西部边界 CTW 和海平面的演变。对于年周期和长周期波,边界响应的特点是改良的架波和一类新的漏坡波,它们沿岸传播,通常比架波慢一个数量级,并向内陆辐射短罗斯贝波。能量不仅沿着斜坡向赤道方向传输,而且还向东传输到内陆,导致能量在当地和近海耗散。 b 效应和摩擦力导致沿赤道方向沿岸衰减的陆架波和斜坡波,从而降低了高纬度变化对低纬度的影响程度,并增加了公海变化对陆架的渗透——较窄的大陆架和较大的摩擦系数会增加这种渗透。该理论与北美东海岸的海平面观测结果进行了比较,定性地再现了沿海海平面相对于公海向南的位移和幅度衰减。这意味着 b 效应、地形和摩擦对于确定沿海海平面变化热点发生的位置非常重要。
主要是由绿色房屋气体排放驱动的人类全球变暖,其稳定速度约为0.2°C/十年,SinceatLeast1970 1.然而,几个阶段性地点在全球平均表面温度的速度上逐渐升高(GSTA)左右(GSTA)的全球平均水平升高(GSTA)的次数较小(GSTA),这是4个4号(GSSA),并增加了1990年4月4日。海水含量积累的加速度6。 因素因人为排放而导致的,包括富集的温室气体堆积,以及硫排放清理7后人为气溶胶的冷却损失,尤其是在中国和全球运输部门。 尽管变暖速率明显增加,并且赤道过渡到ENSO阳性状态,但通过2023年记录的创纪录的表面温度异常令人惊讶。 所有主要温度Seriesshow 2023是有记录以来最温暖的一年。 设定记录的边距约为0.15°C,也是不寻常的,但在强劲的厄尔尼诺时代却没有前所未有的。 值得注意的是,几个海洋盆地在一年中的大部分时间里都有前所未有的表面温度,包括赤道和北太平洋,北大西洋和南大洋8、9。 一个核心问题是,这种强烈的异常是与内部变异性10和已知的衰老量表区域强迫一致,还是表明气候系统的迅速变化,或者我们对其的影响4、11。 清理运输排放量与2021 Hunga Tonga Volcano 13一样,以及与气雾相关的透露措施的抗态度高于预期的气候敏感性。主要是由绿色房屋气体排放驱动的人类全球变暖,其稳定速度约为0.2°C/十年,SinceatLeast1970 1.然而,几个阶段性地点在全球平均表面温度的速度上逐渐升高(GSTA)左右(GSTA)的全球平均水平升高(GSTA)的次数较小(GSTA),这是4个4号(GSSA),并增加了1990年4月4日。海水含量积累的加速度6。因素因人为排放而导致的,包括富集的温室气体堆积,以及硫排放清理7后人为气溶胶的冷却损失,尤其是在中国和全球运输部门。尽管变暖速率明显增加,并且赤道过渡到ENSO阳性状态,但通过2023年记录的创纪录的表面温度异常令人惊讶。所有主要温度Seriesshow 2023是有记录以来最温暖的一年。设定记录的边距约为0.15°C,也是不寻常的,但在强劲的厄尔尼诺时代却没有前所未有的。值得注意的是,几个海洋盆地在一年中的大部分时间里都有前所未有的表面温度,包括赤道和北太平洋,北大西洋和南大洋8、9。一个核心问题是,这种强烈的异常是与内部变异性10和已知的衰老量表区域强迫一致,还是表明气候系统的迅速变化,或者我们对其的影响4、11。清理运输排放量与2021 Hunga Tonga Volcano 13一样,以及与气雾相关的透露措施的抗态度高于预期的气候敏感性。然而,可能性仍然是2023 GSTA记录仅仅是正在进行的原子源性影响的组合,以及在观察到的年际和际变异性范围内的海面温度模式。
东太平洋:东太平洋驱动器上的不同云 - 放射反馈不同,厄尔尼诺尼诺般的变暖大小。这是模型中预计TPSW的不确定性的主要来源,尤其是在远东赤道太平洋中。中太平洋:中部太平洋上的不同负云 - 放射反馈,再加上海洋 - 大气相互作用,包括风蒸发 - SST(WES)(WES)反馈和BJERKNES的反馈,决定了西太平洋的不同变暖。大多数模型低估了这种负面反馈,从而导致西太平洋的预测比多模型平均水平更强。
平均年温度范围从北极的-20℃到赤道的30℃约30℃(图1)。该基线温度范围为50℃,远大于人为气候变化而导致的地球预期变暖:根据未来排放,IPCC估计,到2100年,全球表面温度将升高1。4°C至4。 5℃与工业前水平相比(IPCC,2021)。 因此,尽管赤道纬度的气候变化将非常昂贵,但它已经很热,但在极地纬度上会产生更大的良性效果,在当今的温度太冷,无法促进大量的人和经济活动。 因此,气候变化是一种空间现象。 如果某些地区势必会变得更糟,而另一些地区可能会更好,那么在太空中可以改造人口和经济活动来减轻全球变暖的影响? 一个约束可能是土地可用性。 但是,根据G-Econ 4.0的数据,2005年世界GDP的91%仅在全球10%的土地上生产。 人口的相应数量为75%(Desmet和Rossi-Hansberg,2015年)。 使用4°C至4。5℃与工业前水平相比(IPCC,2021)。因此,尽管赤道纬度的气候变化将非常昂贵,但它已经很热,但在极地纬度上会产生更大的良性效果,在当今的温度太冷,无法促进大量的人和经济活动。因此,气候变化是一种空间现象。如果某些地区势必会变得更糟,而另一些地区可能会更好,那么在太空中可以改造人口和经济活动来减轻全球变暖的影响?一个约束可能是土地可用性。但是,根据G-Econ 4.0的数据,2005年世界GDP的91%仅在全球10%的土地上生产。人口的相应数量为75%(Desmet和Rossi-Hansberg,2015年)。使用
摘要:在耦合模型对比项目(CMIP5)和第6阶段(CMIP6)模型的历史环境中,评估了南方太平洋融合区(SPCZ)的模拟,显示了South Paciififitifitication s -spatial模式和平均偏见的数个差异,但在CMIP6模型中的差异很少,但在CMIP6模型中的差异很小,但该位置的变化很少。 CMIP5型号。从两个合奏中选择了一组模拟合理的SPCZ的模型,并检查了高排放(RCP8.5和SSP5 - 8.5)场景下的未来预测。多模型的平均预测变化SPCZ降水和位置很小,但是这种多模型均值响应掩盖了各个模型的许多未来预测。为了调查故事情节方法的全部范围,重点是模型组,这些模型群体模拟了北向偏移的SPCZ,向南移动的SPCZ或SPCZ位置几乎没有变化。北向偏移的SPCZ组在赤道前的降水量也大大增加,而向南移动的SPCZ组的赤道降水增加较小,但SPCZ地区内的增加量较大。水分预算分解确认了先前研究的发现:平均循环动力学的变化是SPCZ地区降水变化的不确定性的主要来源。尽管不确定性仍然存在于SPCZ预测中,部分原因是海面温度变化和系统的耦合模型偏见的不确定模式,但值得考虑的是,该故事情节方法捕获的合理的SPCZ预测范围是南部太平洋地区的适应和计划。
GPS卫星系统由24颗卫星组成,卫星高度约为2万公里,以6个等间隔轨道分布。轨道平面相对于赤道夹角为55度,每个轨道平面有4颗卫星。卫星的轨道平面近似圆形,公转周期约为11小时58分。这样的卫星分布可以保证在全球任何地点、任何时刻,都有至少4颗卫星可供观测。同样,格洛纳斯系统也将部署24颗卫星。格洛纳斯卫星位于三个轨道平面上,间隔120度,轨道高度约19000公里,轨道倾角约65度,公转周期为12小时。
• 进行矿山规划,以优化扩大的矿石储量估算 2 ; • 分析额外的岩土钻探数据,以确认尾矿储存设施 (TSF)、水库大坝 (WSD) 和加工厂的设计; • 按照全球尾矿管理行业标准,进行 TSF 和 WSD 断裂研究和设计更新; • 按照国际金融公司 (IFC) 的绩效标准、赤道原则和世界银行环境、健康和安全指南,更新环境基线研究、影响评估和管理计划; • 更新和优化项目施工进度表、成本估算和风险管理计划;以及 • 项目执行规划、EPCM 招标准备和政府批准。