11 阿尔凯西和麦克法兰,2023;阿塔鲁里等人。 2023;基督教 2023;法郎 2023;胡赛尼、拉斯穆森和雷斯尼克 2023;吉等人。 2023;基德和比尔汉 2023; Lee、Bubeck 和 Petro 2023;莱特曼等人。 2023;刘、张、梁 2023;梅加赫德等人。 2023;梅策、莫兰丁-雷斯、罗兰-梅策和弗洛林多 2023 年; OpenAI 2023 年 3 月 27 日;波里茨 2023;韦斯和梅斯 2023 年;威瑟 2023;张,等人。 2023;赵,等人。 2023; Zhavoronkov 2023。12 Busch 2023;电子隐私信息中心 2023;Huang 2023;Hosseini 和 Horbach 2023;Lauer、Constant 和 Wernimont 2023;Meskó 和 Topol 2023;美国国立卫生研究院 2023;Schwartz 和 Rogers 2022。13 请参阅 registrar.uky.edu/ferpa 和 registrar.uky.edu/ferpa/ferpa-faculty-and-staff-faq。14 请参阅 www.research.uky.edu/office-research-integrity。15 Bender、Gebru、McMillan-Major 和 Shmitchell 2021;Brown 等人 2020;Caliskan、Bryson 和 Narayanan 2017;Hovy 和 Prabhumoye 2021; Liang, Wu, Morency 和 Salakhutdinov 2021;Najibi 2020;Nazer 等人 2023;Nicholas 和 Bhatia 2023;Schwartz 等人 2022;Small 2023 年 7 月 4 日;Whittaker 等人 2019;Zhuo, Huang, Chen 和 Xing 2023。16 Appel、Neelbauer 和 Schweidel 2023;Lucchi 2023;Saveri 和 Butterick 2023;Sobel 2018;Strowel 2023;Thorbecke 2023;Zirpoli 2023。17 Chen, Zaharia 和 Zou 2023。
赵伟 1,2,# , 李军 1,# , 陈美菊 1 , 居振林 1 , Nicole K. Nesser 3 , Katie Johnson-Camacho 3 , Christopher T. Boniface 3 , Yancey Lawrence 3 , Nupur T. Pande 3 , Michael A. Davies 4 , Meenhard Herlyn 5 , Taru Muranen 6 , Ioannis Zervantonakis 6 、Erika Von Euw 7 、Andre Schultz 1 、Shwetha V. Kumar 1 、Anil Korkut 1 、Paul T. Spellman 3 、Rehan Akbani 1 、Dennis J. Slamon 7 、Joe W. Gray 8 、Joan S. Brugge 6 、Yiling Lu 2 、Gordon B. Mills 9* 、韩亮1,2*1系德克萨斯大学 MD 安德森癌症中心生物信息学和计算生物学,美国德克萨斯州休斯顿 77030 2 德克萨斯大学 MD 安德森癌症中心系统生物学系,美国德克萨斯州休斯顿 77030 3 俄勒冈健康与科学大学分子与医学遗传学系,美国俄勒冈州波特兰 97201 4 德克萨斯大学 MD 安德森癌症中心黑色素瘤医学肿瘤学系,美国德克萨斯州休斯顿 77030。 5 威斯塔研究所分子和细胞肿瘤发生项目,美国宾夕法尼亚州费城 19104 6 哈佛医学院路德维希中心细胞生物学系,美国马萨诸塞州波士顿 02115 7 加州大学洛杉矶分校大卫格芬医学院医学系血液学-肿瘤学分部,美国加利福尼亚州洛杉矶 90095 8 俄勒冈健康与科学大学生物医学工程系空间系统生物医学中心,美国俄勒冈州波特兰 97201 9 俄勒冈健康与科学大学 Knight 癌症研究所和细胞、发育和癌症生物学系,美国俄勒冈州波特兰 97201
Maria Belenky(气候顾问)、Duncan Brack(皇家国际事务研究所)、Pieter Boot(荷兰环境评估机构 PBL)、Michael Bucki(欧盟委员会)、Katherine Calvin(太平洋西北国家实验室)、Tim Christophersen(联合国环境规划署)、Leon Clarke(太平洋西北国家实验室)、Michel Colombier(可持续发展和国际关系 - IDDRI)、Laura Cozzi(国际能源署)、Joe Cranston Turner(伦敦政治经济学院)、Rob Dellink(经济合作与发展组织)、Harald Diaz-Bone(独立顾问)、Steffen Dockweiler(丹麦能源署)、Thomas Enters(联合国环境规划署)、Thomas Hale(牛津大学)、Richard Houghton(伍兹霍尔研究中心)、Inkar Kadyrzhanova(联合国气候变化框架公约)、Johan Kieft(联合国 REDD+ 印度尼西亚协调办公室 - UNORCID)、Ariane Labat(欧盟委员会)、Axel Michaelowa(观点)、Perry Miles(欧盟委员会)、Peter Minang(世界农林业中心 - ICRAF)、Helen Mountford(新气候经济)、Dirk Nemitz(联合国气候变化框架公约)、Ian Ponce(联合国气候变化框架公约)、Mark Roelfsema(PBL 荷兰环境评估机构)、James Rydge(新气候经济)、Katja Schumacher(德国应用生态研究所)、Rajendra Shende(环境技术、教育、研究和恢复 - TERRE 政策中心)、Anne Siemons(德国应用生态研究所)、阿姆斯特丹自由大学)、Erin Sills(北卡罗来纳州立大学)、Thomas Spencer(可持续发展和国际关系 - IDDRI)、Jaime Webbe(联合国环境规划署)、Oscar Widerberg(环境研究所 (IVM))、Michael Wolosin(气候顾问)、赵秀生(清华大学)
(香港,2024 年 10 月 15 日)——香港科技园公司今天与全球新能源技术创新领导者宁德时代新能源科技股份有限公司(宁德时代)共同主持宁德时代国际研发中心的正式开幕仪式。仪式标志着宁德时代在香港科学园正式成立,公司计划在第一阶段招募 200 名致力于科研和本地人才发展的专业人员。新研究院预计将为香港新能源和绿色技术的发展做出重大贡献。作为全球领先的锂离子电池制造商,宁德时代连续七年入选福布斯中国 50 强最具创新力公司之一。宁德时代国际研发中心占地约 9,000 平方英尺,是该公司在中国内地和德国以外的第六个全球研发机构。这体现了香港“背靠祖国、通向世界”的独特优势。揭幕仪式由香港创新科技及工业局局长孙东教授、香港科技园公司行政总裁黄克强先生、香港科技园公司署理企业发展总监兼生态系统发展主管柯志雄先生、宁德时代研发联席总裁欧阳楚英教授等嘉宾主礼。其他出席嘉宾还包括宁德时代企业规划部总监曲涛先生、宁德时代国际研发院副总裁兼首席技术官龚家栋先生。创新、科技及工业局局长孙冬教授表示:“作为全球新能源科技的领导者,宁德时代展现出敏捷的领导力和快速创新的能力。我和在场的各位非常高兴地见证宁德时代国际研发中心在不到一年的时间内于香港科学园正式落成。除了宁德时代,特别高兴地看到越来越多来自内地和海外的科技公司在香港扎根。过去两年,我们成功吸引超过100家极具潜力或代表性的创科企业来港设立或拓展业务。特区政府将与这些企业紧密合作,全面培育香港的创科生态圈,协助他们创造最大价值。”
基于 CRISPR/Cas 的基因组编辑工具彻底改变了几乎所有生命科学领域,尤其是植物生物学(Hu 和 Li,2022 年)。该技术为基础研究增加了一个新维度,通过敲除或激活基因来研究基因的功能。CRISPR 系统的主要重要应用是开发植物的有针对性的基因改造,以更好地应对日益不利于提高植物生产力的变化的气候。事实证明,精确的基因组编辑比传统的诱变或转基因安全得多,特别是因为变化通常涉及单个核苷酸,并且不一定与修饰基因组中是否存在外来 DNA 有关(El-Mounadi 等人,2020 年;Jung 和 Till,2021 年)。尽管 CRISPR 工具的发展非常迅速且不断改进,但仍有许多挑战需要克服。在本研究主题中,我们尝试展示高效和精确编辑植物基因组的前景,并介绍其在解决植物生物学和粮食安全当前问题中的应用。目前,已经开发了许多工具来编辑目标基因座。不幸的是,通常可用的工具对某些植物物种效率低下,或倾向于在脱靶位点诱发非预期突变。实现高效基因组编辑的可能性也直接基于转化技术的发展和将必需的 CRISPR 系统组件递送到植物细胞,这通常比动物细胞复杂得多。就多种园艺作物而言,转基因育种已导致转基因植物的产生(Ghag 等人,2022 年),但一些蔬菜已成功实现基因组编辑。西兰花转基因植物的开发主要集中在营养品质和抗逆性上。世界上发生的重要疾病之一是根肿病,由根肿菌引起,影响油菜、花椰菜、西兰花、抱子甘蓝、大白菜和萝卜。因此,需要开发针对性地将抗性基因导入栽培品种的方案。赵等人建立了一种基于农杆菌属的有效转化系统,可用于
使用 Mn3O4 八面体制备的 Si 掺杂 LiMn2O4 正极材料增强的 LiBs 电化学性能 朱甘 1、秦明泽 1、吴婷婷*、赵孟远、沈燕生、周宇、苏悦、刘云航、郭美梅、李永峰、赵洪远 * 河南科技学院机电工程学院先进材料与电化学技术研究中心,新乡 453003,中国 * 电子邮件:wtingtingwu@163.com (T. Wu),hongyuanzhao@126.com (H. Zhao) 收到:2022 年 3 月 8 日/接受:2022 年 3 月 28 日/发表:2022 年 4 月 5 日 我们提出了一种 Si 掺杂和八面体形貌的共同改性策略来提高 LiMn2O4 的电化学性能。以Mn3O4八面体为锰前驱体,SiO2纳米粒子为硅掺杂剂,采用高温固相法制备了Si掺杂的LiMn2O4样品(LiSi0.05Mn1.95O4八面体)。XRD和SEM表征结果表明,Si4+离子的引入对LiMn2O4固有的尖晶石结构没有产生实质性影响,LiSi0.05Mn1.95O4八面体呈现出相对均匀的粒径分布。在1.0C循环下,LiSi0.05Mn1.95O4八面体比未掺杂的LiMn2O4表现出更高的初始可逆容量。经过 100 次循环后,LiSi 0.05 Mn 1.95 O 4 八面体表现出更好的循环稳定性,容量保持率高达 94.7%。此外,LiSi 0.05 Mn 1.95 O 4 八面体表现出良好的倍率性能和高温循环性能。如此好的电化学性能与 Si 掺杂和八面体形貌的协同改性有很大关系。关键词:LiMn 2 O 4 ;硅掺杂;八面体形貌;Mn 3 O 4 八面体;电化学性能 1. 引言
NOTES: MOE, Ministry of Education; NSFC, National Science Foundation of China; SAFEA, State Administration of Foreign Expert Affairs; CLGCTW, Central Leading Group for the Coordination of Talent Work. (a) The 100 Talents Plan initially included part-time participants, but the CAS changed this policy around 2004. Too many individuals accepted the award, but rarely appeared at the CAS (Hao Xin, 2006). (b) “Two-decade Development of the Hundred Talent Program” (Chinese Academy of Sciences, n.d.) reported that 90 percent of the 2,145 total awardees were from abroad, yielding 1,930 program participants. (c) Liu Bin, Qiao Lili, and Zhang Yi, “An Analysis of the Funding Status and Achievement Impact of National Science Fund for Distinguished Young Scholars in the Life Sciences” (in Chinese), Science Funds in China , No. 2 (2016): 122−131. (d) The Spring Light Program brought more than 300 delegations to China by the end of 2009. These consisted of 15,000 overseas mainlanders who established more than 1,000 projects 赵峰 , 苗丹国 , 魏祖 钰 , 程希 (Zhao Feng, Miao Danguo, Wei Zuyu, Cheng Xi), eds., 留学大事概 览 , 1949–2009 (An Overview of Overseas Study, 1949–2009). 北京: 现代出版社 , 2010, 86. From 2006 to 2018, the Chunhui Award ( 春 晖杯 ) had shortlisted 2,528 projects, of which 448 (17 percent) relocated to China. By 2023, 3,424 “excellent” projects had been selected. See Andrew Spear, “Serve the Motherland while working overseas,” in William C. Hannas and Didi Kirsten Tatlow, eds., China's Quest for Foreign Technology: Beyond Espionage (London: Routledge, 2021 ) 30-31. (e) SAFEA was closed in 2018 and reconstituted under the MOST. See 2017 Budget of the Former State Administration of Foreign Experts Affairs , CSET, Washington, DC, https://cset.georgetown.edu/publication/2017-budget-of-the-former-state-administration-of-foreign-experts- affairs/. (f) The names of the 111 Program project bases are posted at https://opportunities- insight.britishcouncil.org/news/market-news/introduction-china%E2%80%99s-%E2%80%9C111- project%E2%80%9D-0 (British Council, 2017). (g) There were 4,128 TTP awardees at the end of 2014, with an additional 1,028 participants joining TTP in 2015. China's TTP has attracted 5,206 high-end oversea talents' [Zhongguo “qianrenjihua” yinjin 5206 ming haiwai gaocengci rencai], accessed March 10, 2020, http://www.gqb.gov.cn/news/2016/0107/37723.shtml. The Chinese media estimated 8,000 total TTP awardees in 2018. “Shengdu jiedu: guojia ‘qianrenjihua' rencai xiangmu shenbao” [‘In-depth interpretation: 2018 national TTP application'], accessed October 2, 2019,
科学委员会 Sergey Alekseenko,库塔特拉泽研究所俄罗斯热物理学系 Derek Baker,土耳其中东技术大学 Ryszard Białecki,波兰西里西亚理工大学 Camilo Bulnes,墨西哥国立自治大学 Bassam Dally,沙特阿拉伯阿卜杜拉国王科技大学 Kyle Daun,加拿大滑铁卢大学 Pradip Dutta,印度科学研究所 Pedro Coelho,葡萄牙里斯本高等技术学院 Renata Cotta,巴西里约热内卢联邦大学 Michael Epstein,以色列特拉维夫大学 Timothy Fisher,美国加州大学洛杉矶分校 Francis Franca,巴西南里奥格兰德联邦大学 Iskender Gökalp,土耳其技术与创新委员会 Kamel Hooman,荷兰代尔夫特理工大学 John R. Howell,美国德克萨斯大学奥斯汀分校 Nikolay Ivanov,俄罗斯圣彼得堡理工大学 James Klausner,美国密歇根州立大学Atsuki Komiya,日本东北大学 Wojciech Lipiński,塞浦路斯研究所,塞浦路斯 Fengshan Liu,加拿大国家研究委员会,加拿大 Peter Loutzenhiser,美国佐治亚理工学院 Christos Markides,英国伦敦帝国理工学院 M. Pinar Mengüç,土耳其厄齐因大学 Michael F. Modest,美国加州大学默塞德分校 Tuba Okutucu-Özyurt,土耳其国际电信联盟能源研究所 Mike Owen,南非斯泰伦博斯大学 Nesrin Özalp,美国伊利诺伊州立大学 Jaona Randrianalisoa,法国兰斯大学 Martin Roeb,德国航空航天中心,德国 Gary Rosengarten,澳大利亚皇家墨尔本理工大学 帅勇,哈尔滨工业大学,中国 Terrence Simon,美国明尼苏达大学 Janusz Szmyd,波兰克拉科夫 AGH 大学 陶文泉,西安交通大学,中国 Felipe托雷斯,澳大利亚国立大学,澳大利亚 王志华,新加坡国立大学,新加坡 王秋旺,西安交通大学,中国 俞子涛,浙江大学,中国 张星,清华大学,中国 摘要截止日期 意向书截止日期为 2024 年 9 月 1 日 2 页摘要截止日期为 2024 年 10 月 1 日 入选投稿人将被邀请向 ASME《传热传质杂志》未来的特别专题提交全文论文。
异常检测是一个重要的课题,已在不同的研究领域和应用领域中得到深入研究。它通常涉及异常数据、不健康状态的检测和故障诊断,有助于保证工业系统的稳定性、安全性和经济性。随着智能工业和传感器系统的发展,大量数据变得唾手可得,但工业系统的异常检测面临着重大挑战。一个典型的例子是对能源相关系统的研究,如热能、可再生能源(如风能、光伏)、电动汽车等。这些系统涉及各种数据格式和更复杂的数据结构,使异常数据检测成为一项挑战。目前,在深度学习和大数据分析的发展下,能源系统异常数据检测已经取得了许多有希望的成果。然而,由于能源行业的复杂性,许多具有挑战性的问题仍未解决。能源系统异常检测的新技术和高级工程应用仍然吸引着广泛的学者和行业。本研究专题的目的是征集有关异常检测技术的最新发展和能源相关系统应用进展的论文。该主题可以涵盖与异常检测算法开发相关的技术,例如机器学习、数据挖掘、深度学习、图论、大数据等。可以涉及能源应用的各个方面,例如数据清理、能源系统的不健康评估、状态监测和能源相关行业中的故障诊断。特别关注与能源相关的系统,例如风能、光伏、热能、电动汽车 (EV) 开发等。经过论文研究主题和严格审查,327 位作者提交的 63 篇高质量文章最终被接受,以表彰他们为电力系统、可再生能源系统和其他工业系统的状态监测和异常检测研究所做的贡献。在基于变分模态分解和随机森林的系列电弧故障诊断论文中,赵等人。提出了一种基于变分模态分解和能量熵的方法提取串联电弧故障的特征量,进而完成故障检测。在论文《通过结合在线机器学习和统计分析的数据驱动方法顺序检测微电网不良数据》中,黄等人提出了一种顺序检测方法来检测能源管理系统(EMS)中的不良数据。
(1) Baah, S.;Laws, M.;Rahman, KM 抗体–药物偶联物——教程综述。Molecules 2021 ,26 (10), 2943。https://doi.org/10.3390/molecules26102943。(2) Chau, CH;Steeg, PS;Figg, WD 用于治疗癌症的抗体–药物偶联物。The Lancet 2019 ,394 (10200), 793–804。https://doi.org/10.1016/S0140-6736(19)31774-X。(3) Beck, A.;Goetsch, L.;Dumontet, C.;Corvaïa, N. 下一代抗体–药物偶联物的策略与挑战。Nat. Rev. Drug Discov. 2017 ,16 (5),315–337。https://doi.org/10.1038/nrd.2016.268。(4)Yu, L.;Hua, Z.;Luo, X.;Zhao, T.;Liu, Y. 血浆白蛋白与化疗药物疗效的系统相互作用。Biochim. Biophys. Acta Rev. Cancer 2022 ,1877 (1),188655。https://doi.org/10.1016/j.bbcan.2021.188655。(5)Spada, A.;Emami, J.;Tuszynski, JA;Lavasanifar, A. 白蛋白作为纳米药物递送载体的独特性。Mol. Pharm. 2021, 18 (5), 1862–1894。 https://doi.org/10.1021/acs.molpharmaceut.1c00046。 (6)拉希米扎德,P.;杨,S。 Lim,SI 白蛋白:药物输送的新兴机会。生物技术。生物过程工程。 2020,25(6),985–995。 https://doi.org/10.1007/s12257-019-0512-9。 (7) 赵平;王,Y。吴,A。拉奥,Y。 Huang, Y.白蛋白结合蛋白在癌症进展和仿生靶向药物递送中的作用。欧洲化学生物化学公司。 J.化学。生物。 2018 ,19 (17),1796–1805。https://doi.org/10.1002/cbic.201800201。(8)Tao, C.;Chuah, YJ;Xu, C.;Wang, D.-A。白蛋白结合物和组装体作为生物医学应用的多功能生物功能添加剂和载体。J. Mater. Chem. B 2019 ,7 (3),357–367。https://doi.org/10.1039/C8TB02477D。(9)Liu, Z.;Chen, X。简单的生物共轭化学为临床带来重大进展:白蛋白作为诊断和精准治疗的多功能平台。Chem. Soc. Rev. 2016 ,45 (5),1432–1456。 https://doi.org/10.1039/C5CS00158G。(10)Kratz,F. 使用白蛋白作为药物载体的临床更新 - 评论。J.