-积分计算用于评估裸露焊盘封装系列的可靠性问题。使用参数化 FE 模型,可以探索任何几何和材料效应对裸片焊盘分层和裸片翘起的影响。例如,发现裸片焊盘尺寸的影响远不如裸片厚度的影响重要。使用断裂力学方法,从热-湿-机械角度推断出分层的起始位置。结果表明,当存在裸片焊盘分层时,裂纹很可能在裸片下方生长,并会发生裸片翘起。发现裸片翘起与其他故障模式(如球焊翘起)之间的相互作用并不十分显著。将 FE 模型与基于模拟的优化方法相结合,推断出裸露焊盘系列最佳可靠性的设计指南。
cos 2 θ L +cos 2 θ R − 2 ( θ L + θ R − 2 θ C ) + K 2 x f + K 3 ˙ x f + K 4 ˙ φ (12) 当将其应用于具有与第 4.1 节中相同的特征结构分配策略的基准时,制导律增益变为: K 1 , 2 , 3 , 4 = [0 . 22 , 110 . 89 , 405 . 9 , − 1 . 23] (13) 图 5 显示了两个不同的起始位置(∆Y 0 = 20m 或 ∆Y 0 = 100m)。 当飞机接近期望位置时,结果很好(即接近基线),但是当位置远离着陆轴时,制导律无法以适当的方式执行。事实上,飞机并没有降落在跑道上。为了解决这个问题,在(Bourquardez and Chaumette,2007b)中提出了一种参考轨迹策略,然而它的生成假设初始位置是已知的(这超出了我们的假设)。顺便说一句,(12)表明跑道尺寸已经通过参数 H = L 应用于控制律本身(13)中
图1:(a)人mtDNA的示意图。mRNA,rRNA和tRNA的基因编码区分别显示为蓝色,绿色和橙色。主要的非编码区(NCR)显示为灰色。位于NCR中的两个转录启动子,轻链启动子(LSP)和重链启动子(HSP)。LSP负责1 mRNA和8个TRNA的转录。HSP负责12个mRNA,14个TRNA和2个RRNA的转录。重链复制的起始位点(Orih,O H)也位于NCR中,而光链(Oril,O l)的起始位置位于NCR以外,距LSP转录位点约2/3。(b)内部线粒体膜上氧化磷酸化(OXPHOS)的示意图。由mtDNA编码的蛋白质亚基以深蓝色突出显示。nd1、2、3、4、4l和5(紫色)是Oxphos复合物的亚基。CytB(橙色)是复合物III的亚基。Cox I,II和III(绿色)是复合物IV的亚基。ATP 6和ATP 8(黄色)是复合V的亚基。
自动驾驶汽车中的运动计划问题是计算上的[7],通常分解为三个子问题[15]:(i)任务计划; (ii)行为计划; (iii)本地计划。图。1。在我们的自动驾驶汽车中,任务计划者接收起始位置,并确定自动驾驶汽车必须驾驶的车道顺序。此序列被转换为intents(例如在下一个十字路口右转),并将其发送给行为计划者以及环境表示。行为计划者然后生成一系列高级参数化驱动器操作,以导航环境朝着指定目标。当地规划师发现了一个平稳的轨迹,可满足所需的行为和舒适感。最后,车辆控制器使用轨迹来确定转向,油门和制动命令。行为计划的早期方法使用有限的状态机[13,18]。由于驾驶问题的固有复合物,这种系统通常很难维护。状态机器的组合将问题分解为子问题,可以减轻这种缺乏可维护性[17]。国家机器的产生层次结构通常引入了优先表的需求[14],这是一个基于规则的系统也很熟悉的概念[5]。
摘要 本文对氨-氧-氮-水混合物中的流光进行了自洽一维建模。开发并验证了一种包含物质输运、静电势和详细化学性质的流体模型。然后使用该模型模拟由纳秒电压脉冲驱动、在不同热化学条件下由一维层流预混氨-空气火焰产生的雪崩、流光形成和传播阶段。成功证实了 Meek 标准在预测流光起始位置方面的适用性。由于电离率不同,流光形成和传播持续时间随热化学条件的不同而存在显著差异。热化学状态还影响击穿特性,通过保持背景减小电场恒定来测试击穿特性。详细的动力学分析揭示了 O(1 D)在关键自由基(如 O、OH 和 NH 2 )生成中的重要性。此外,还报道了 NH 3 的解离电子激发对 H 和 NH 2 自由基产生的贡献。不同热化学状态下各种非弹性碰撞过程的电子能量损失分数的空间和时间演变揭示了燃料解离所消耗的输入等离子体能量以及雪崩和流光传播阶段主要过程的巨大变化。本研究报告的方法和分析对于开发用于氨点火和火焰稳定的受控纳秒脉冲非平衡等离子体源的有效策略至关重要。