请提交上述内容的副本。 无法直接领取说明书的,应将申请表连同资格审查结果通知书一起以传真方式寄送。合同部门确认资格后,以传真方式发送规范书。 5. 参与竞标的资格 (1)不属于《主计法》第七十条规定情形的。此外,未成年人、被监护人或接受协助的人,即使已经取得订立合同所必需的同意,也属于同一条款内有特殊事由的情况。 (2)不属于《预算会计审计法》第七十一条规定情形的。 (3)2022、2023、2024年度国防部招标资格(各部委统一资格)“货物销售”类别中评级为D级或以上者,或者,如果某人不具备该资格,则须在招标之日前通过招标资格审查并在招标资格名单中登记,并被认定具有该资格。 (4)该人目前没有受到防卫省长官房长官、防卫政策局局长、采购技术后勤局局长(以下称为“防卫省暂停权限”)或海上自卫队参谋长根据“设备等及服务采购暂停提名等指南”的暂停提名规定。 (5) 与前项规定暂停指定对象者有资本或人身关系,且无意与国防部签订与其同类物品买卖、制造或承包服务契约者。 (六)经抽检合格。 6.投标书所记载的金额 在决定中标人时,中标金额为投标书所记载的金额(单价)加上相当于该金额的10%(减税率项目为8%)的金额(如果该金额有1日元以下的尾数,则将该尾数四舍五入)。因此,无论投标人是消费税和地方消费税的纳税企业还是免税企业,都必须在投标书上记载相当于估算金额的110/100(减税率项目为108/100)的金额。
在过去的二十年里,冷分子研究从一个新兴领域发展成为一股强大的科学潮流,拓展了物理科学的视野 1 – 3 。科学界目前正在见证从早期的抱负到有影响力的科学成果和新兴技术的转变。从冷却分子到未探索的低能状态的开创性想法 4 , 5 为更成熟的目标驱动分子量子态控制追求开辟了道路 6 。化学相互作用的研究越来越详细,包括单个反应途径和共振 7 – 9 。分子复杂性已成为展示复杂量子控制和探索新兴现象的一个特征 10 – 15 。通过使用外部场操纵分子来实现具有长程、各向异性相互作用的可调多体哈密顿量的几种想法已经扩展了量子模拟的前景 16 – 20 。具有延长相干时间的分子现在设定了更严格的限制,为量子传感以及探索基本对称性和标准模型以外的新物理开辟了新天地 21 – 23 。此外,对复杂分子的越来越精确的控制恰好符合量子信息的新兴主题,它建立在微观量子系统的高保真操纵之上 24 – 27 。鉴于分子在广泛的物理过程中发挥的核心作用,冷分子领域的进展正在将来自不同学科的科学家聚集在一起。粒子物理学家对使用分子来寻找逃避粒子和场很感兴趣。凝聚态物理学家正在构建量子材料
[1] 赵学历 , 金尚忠 , 王乐 , 等 . 基于结构函数的 LED 热特 性测试方法 [J]. 光电工程 , 2011, 38(9): 115-118. [2] 张立 , 汪新刚 , 崔福利 . 使用 T3Ster 对宇航电子元器件 内部热特性的测量 [J]. 空间电子技术 , 2011(2): 59-64. [3] MEY G, VERMEERSCH B, BANASZCYK J, et al. Thermal Impedances of Thin Plates[J]. International Journal of Heat and Mass Transfer, 2007, 50: 4457-4460. [4] VASILIS C, PANAGIOTIS C, IONNANIS P, et al. Dy- namic Thermal Analysis of Underground Medium Power Cables Using Thermal Impedance, Time Constant Distri- bution and Structure Function[J]. Applied Thermal Engi- neering, 2013, 60: 256-260. [5] MARCIN J, JEDRZEJ B, BJORN V, et al. Generation of Reduced Dynamic Thermal Models of Electronic Systems from Time Constant Spectra of Transient Temperature Responses[J] Microelectronics Reliability, 2011, 51: 1351-1355. [6] MARCIN J, ZOLTAN S, ANDRZEJ N. Impact of
硕士研究生(2013-2014)Yin Bangqi新加坡设计与麻省理工学院(2013-2014)Aditya Ranjan新加坡技术与设计与MIT大学(2016-2017)WU TONG MONASH大学(2018-2018-2018-2018-2020)Liu Sheng Sheng Sheng Electronics Designitute(2018-2020-220)加入了Shaoyin Tech。(2020-2023)冯·施豪(Rveng Shihao)加入了Rvbust Tech。(2020年至2023年)郭尤辛加入了香港公共服务部(2021-2024)Jie Yu Master Class of 2024(2021-2024)Jiang Bingfa Master Class of 2024 of 2024(2021-2021-2025) (2022-2025)Xu Ronghan Master Class 2025(Robocon Sustech的团队负责人)(2023-2026)Huang Bangchao Master Class of 2026
我们开发了一种干涉技术,用于对光学晶格中非平衡超冷玻色子的场正交算子进行时间分辨测量。该技术利用磁性原子的内部状态结构来创建两个具有不同自旋状态和晶格位置的原子子系统。费什巴赫共振会关闭一个自旋子系统中的原子间相互作用,使其成为一个特征明确的参考状态,而另一个子系统中的原子则会在可变的保持时间内经历非平衡动力学。通过第二次光束分裂操作干涉子系统,通过检测相对自旋布居,可以对相互作用的原子进行时间分辨的正交测量。该技术可以为各种哈密顿量和晶格几何形状(例如立方、蜂窝、超晶格)提供正交测量,包括具有隧穿、使用人工规范场的自旋轨道耦合和高频带效应的系统。通过分析隧穿可忽略的深晶格的特殊情况,我们获得了正交可观测量及其涨落的时间演化。作为第二个应用,我们表明干涉仪可用于测量原子间相互作用强度,超海森堡标度为 ¯ n − 3 / 2(平均每个晶格点的原子数),标准量子极限标度为 M − 1 / 2(晶格点数)。在我们的分析中,我们要求 M ≫ 1,并且对于实际系统,¯ n 很小,因此总原子数 N = ¯ nM 的缩放低于海森堡极限;尽管如此,在此系统中应该可以进行基于相互作用的量子计量学的缩放行为测试。
在公众的认知中,新技术所预言的量子优势几乎与预期的量子加速同义。这种印象是由量子计算所驱动的,它确实能比任何传统计算机更快地解决某些问题 [1]。至少从表面上看,这种预期似乎与所谓的量子速度极限 (QSL) 不一致,QSL 是量子系统演化最大速率的基本界限 [2,3]。事实上,不同的 QSL 可以被解读为经典性的预兆 [4,5],因为它们深深植根于海森堡关于能量和时间的更严格的不确定性关系 [6]。一旦人们意识到在计算机科学的术语中,“加速”仅仅指所需单门操作数量的减少,而在量子物理学中 QSL 指的是应用此类门操作的最大速率 [7],这种明显的矛盾很快就会消失。因此,也就不难理解为什么在几乎所有量子物理领域,包括量子通信[8–13]、量子计算[14,15]、量子控制[16–18]、多体物理[19,20]和量子计量[21,22],都有如此多的研究活动致力于 QSL 的研究。参见有关该主题的一些最新评论 [23,24]。最初的 QSL 是为标准量子力学 [25] 制定的,其动力学由薛定谔方程描述。然而,在过去十年中,很明显有各种“量子资源”可用于加速量子动力学。例如,已经确定,经过精心设计的开放系统动力学允许
图 2. 实验装置。PBS 代表偏振分束器,蓝色 AOM 表示控制 3D 光学胶的声光调制器 (AOM),吸收光束 AOM 代表控制成像光束频率失谐的 AOM,绿色锁 AOM 表示控制来自参考腔 (ULE 腔) 的 530.7 nm 激光频率失谐的 AOM,蓝色锁 AOM 代表控制来自参考腔 (ULE 腔) 的 410.6 nm 激光频率失谐的 AOM