Loading...
机构名称:
¥ 1.0

在公众的认知中,新技术所预言的量子优势几乎与预期的量子加速同义。这种印象是由量子计算所驱动的,它确实能比任何传统计算机更快地解决某些问题 [1]。至少从表面上看,这种预期似乎与所谓的量子速度极限 (QSL) 不一致,QSL 是量子系统演化最大速率的基本界限 [2,3]。事实上,不同的 QSL 可以被解读为经典性的预兆 [4,5],因为它们深深植根于海森堡关于能量和时间的更严格的不确定性关系 [6]。一旦人们意识到在计算机科学的术语中,“加速”仅仅指所需单门操作数量的减少,而在量子物理学中 QSL 指的是应用此类门操作的最大速率 [7],这种明显的矛盾很快就会消失。因此,也就不难理解为什么在几乎所有量子物理领域,包括量子通信[8–13]、量子计算[14,15]、量子控制[16–18]、多体物理[19,20]和量子计量[21,22],都有如此多的研究活动致力于 QSL 的研究。参见有关该主题的一些最新评论 [23,24]。最初的 QSL 是为标准量子力学 [25] 制定的,其动力学由薛定谔方程描述。然而,在过去十年中,很明显有各种“量子资源”可用于加速量子动力学。例如,已经确定,经过精心设计的开放系统动力学允许

超冷量子气体中的非线性加速 - NSF-PAR

超冷量子气体中的非线性加速 - NSF-PARPDF文件第1页

超冷量子气体中的非线性加速 - NSF-PARPDF文件第2页

超冷量子气体中的非线性加速 - NSF-PARPDF文件第3页

超冷量子气体中的非线性加速 - NSF-PARPDF文件第4页

超冷量子气体中的非线性加速 - NSF-PARPDF文件第5页

相关文件推荐