自主导航等等。尽管全球定位系统 (GPS) 已成为室外定位系统最受欢迎的示例之一,但它无法在室内环境中提供高精度定位,因为 GPS 信号(即射频 (RF))无法很好地穿透建筑物墙壁,从而导致破坏性误差,无法在矿井和地下环境中使用 [1-3]。目前,已有多种不同技术被用于 IPS,例如超声波 [4]、无线电波 [5]、[6]、射频识别 (RFID) [7]、[8]、Zigbee、蓝牙 [9] 和超宽带 (UWB) [10]。基于超声波的室内定位系统 (IPS) 具有较大的测距和定位误差(精度为 10 厘米范围),因为其波长通常较大,并且声速受环境温度的影响 [11]。基于 RF 的定位面临多个问题,包括电磁 (EM) 辐射,这限制了基于 RF 的系统在某些领域(即医疗等)的使用。此外,RF 信号 (i) 受室内环境中多径效应的影响,从而增加定位误差;以及 (ii) 受可用频谱的限制,而频谱非常拥挤。RFID 和 UWB 借助专用基础设施和特殊设备识别定位信号。其他定位方法,如基于 Zigbee 和蓝牙的系统,容易受到信号源波动的影响。
金红石二氧化锗 (r-GeO 2 ) 是最近预测的一种超宽带隙半导体,在高功率电子器件中具有潜在的应用,其中载流子迁移率是控制器件效率的重要材料参数。我们应用基于密度泛函和密度泛函微扰理论的第一性原理计算来研究 r-GeO 2 中的载流子-声子耦合,并预测其声子限制的电子和空穴迁移率随温度和晶体取向的变化。计算出的 300 K 下的载流子迁移率为 l elec ; ? ~ c = 244 cm 2 V 1 s 1 ,l elec ; k ~ c = 377 cm 2 V 1 s 1 ,l hole ; ? ~ c = 27 cm 2 V 1 s 1 ,和 l hole ; k ~ c = 29 cm 2 V 1 s 1 。室温下,载流子散射以低频极性光学声子模式为主。n 型 r-GeO 2 的预测 Baliga 性能系数超过了 Si、SiC、GaN 和 b -Ga 2 O 3 等几种现有半导体,证明了其在高功率电子设备中的卓越性能。
GOMACTech 成立于 1968 年,是审查和报告政府系统微电路技术和应用发展以及政府主要微电子和半导体计划公告和更新的首要论坛。GOMACTech 是一个非机密的出口管制活动。所有注册者必须提供美国公民身份或永久居留身份证明,并签署保密协议,然后才可获准进入会议。GOMACTech-2024 的全体会议将讨论社区和协作的主题,并设有一个技术计划,介绍最新的技术进步,包括值得信赖和网络安全的组件/技术、电光组件、射频组件、微纳米电子、电子集成、电子材料、新兴神经形态电子、量子信息/传感技术和超越摩尔定律的技术、宽带隙和超宽带隙材料和设备开发的进展以及新型电力电子。摘要被接受的作者(用于口头和海报展示)必须提交完整的论文以供会议记录使用。征集以下技术主题领域的摘要。如需更多技术主题领域的详细描述,请访问 GOMACTech 网站 → 论文提交 → 征文。
摘要 — Ga 2 O 3 的低热导率可以说是 Ga 2 O 3 功率和射频器件最严重的问题。尽管进行了许多模拟研究,但是还没有关于大面积封装 Ga 2 O 3 器件热阻的实验报告。这项工作通过展示 15-A 双面封装 Ga 2 O 3 肖特基势垒二极管 (SBD) 并测量其在底部和结侧冷却配置下的结到外壳热阻 (R θ JC) 来填补这一空白。R θ JC 特性基于瞬态双界面法,即 JEDEC 51-14 标准。结冷和底部冷却的 Ga 2 O 3 SBD 的 R θ JC 分别为 0.5 K/W 和 1.43 K/W,前者的 R θ JC 低于同等额定值的商用 SiC SBD。这种低 R θ JC 归因于直接从肖特基结而不是通过 Ga 2 O 3 芯片进行散热。R θ JC 低于商用 SiC 器件,证明了 Ga 2 O 3 器件在高功率应用中的可行性,并表明了适当封装对其热管理的重要性。索引术语 — 超宽带隙、氧化镓、封装、肖特基势垒二极管、热阻。
氮化铝 (AlN) 的带隙能量为 6.28 eV,可以生长为直径最大 4 英寸的高质量块状晶体,并伴有约 15 MV cm − 1 的高击穿场。1 – 8 这些固有特性使 AlN 成为军用和民用电力及极端环境电子设备等各种应用的有希望的候选材料,包括高温、高辐射暴露、直流微电网、脉冲功率武器和在极端条件下运行的系统,以及高压直流 (HV-DC) 电网内的开关和传输。1、2、8 – 12与窄带隙半导体相比,AlN 在高温和高功率下表现出优异的性能。在功率开关应用中,这种超宽带隙 (UWBG) 半导体表现出减小的电阻能量损耗,有可能用单个器件取代复杂的堆叠配置。 2、5、6、8 此外,在射频应用中,它们有助于开发射程更远、功能更强大的雷达系统,并有望应用于定向能系统。1、2、8 目前的研究重点是控制掺杂和实现用于垂直功率整流器的厚(>10μm)轻掺杂外延结构。4、7、9、11、13-16 为了充分利用这种材料的优势,体相和外延技术的发展
高频无线电力传输技术特刊 无线电力传输 (WPT) 技术在众多新兴应用中越来越重要,包括交通电气化、电网、消费电子、医疗和太空。其非接触性质使其在高温、水下、地下和外层空间等具有挑战性的环境条件下具有优势。当前 WPT 系统的性能与开关频率密切相关,开关频率是功率容量、功率密度和效率的关键决定因素。随着宽带隙和超宽带隙器件 (WBG 和 UWBG) 的快速发展,最新的半导体能够在高功率水平下实现高开关频率,从而为 WPT 系统提供能量。此外,大多数关于高频 WPT 的单独报告都没有考虑如何在批量生产中制造谐振器,而单个谐振器是针对测试进行调整的,这不适合工业批量生产。本期特刊积极征集针对广泛功率水平范围内高频 WPT 技术的前沿研究贡献。通过展示最新进展,我们旨在突破当前限制当代 WPT 系统频率和功率水平的界限。我们邀请研究人员为此做出贡献,并促进这一充满活力的领域的进一步创新。
超宽带 (UWB) 合成孔径雷达 (SAR) 被用于低频操作,以便从飞机或卫星上探测树叶下面和地面上的遮挡目标。虽然它具有明显的军事用途,但它也具有民用用途,例如地球物理研究、天气预报等。已经提出了许多图像处理算法,并将其应用于低频 UWB SAR。这些算法主要分为两类:频域和时域。本论文主要关注频域,特别是距离迁移算法 (RMA)。RMA 在范围内执行一维插值。此操作称为 Stolt 插值。在本论文中,我们研究了机载单基地 SAR 的图像处理。尽管这项研究是针对聚光灯 SAR 进行的,但由于天线波束宽度较大,因此 SAR 操作可以考虑介于聚光灯和条带图之间。主要目的是处理移动目标的散焦图像,并通过为 RMA 提出的方法重新聚焦它。该方法应用了平台和目标在运动时从它们之间的多普勒效应中产生的方位角新波数。这种聚焦方法还有助于确认图像中是否存在移动目标。为了进行模拟,UWB 低频参数取自 CARABAS II SAR 系统。
半导体光电设备,能够以紧凑且高效的方式将电力转换为光线或相反的光线为电力,代表了有史以来最先进的技术之一,该技术具有广泛的应用范围内的现代生活。近几十年来,半导体技术已从第一代狭窄带隙材料(SI,GE)迅速发展为最新的第四代超宽带隙半导体(GAO,Diamond,Aln),其性能增强以满足需求的增长。此外,将半导体设备与其他技术合并,例如计算机辅助设计,最先进的微/纳米织物,新型的外延生长,已经显着加以促进了半导体Optoelectronics设备的发展。在其中,将元浮面和半导体的光电设备集成,为电磁反应的芯片控制打开了新的边界,从而可以访问以前无法访问的自由度。我们回顾了使用集成的跨侧面的各种半导体光电设备在芯片上控制的最新进展,包括半导体激光器,半导体光发射器,半导体光电镜像和低维度的半导体。MetaSurfaces与半导体的集成提供了晶圆级的超级反理解决方案,用于降低半导体设备的功能,同时还提供了实施实际应用中实现实际应用中的实用平台。
摘要:本文提出了一种新型的分散式两层多传感器融合架构,用于建立一种新型的弹性姿态估计方案。正如将要介绍的那样,融合架构的第一层考虑一组分布式节点。来自不同传感器的所有可能的姿态信息组合被整合在一起,以获得通过涉及多个扩展卡尔曼滤波器获得的各种估计姿态可能性。基于从第一层获得的估计姿态,在第二层引入了故障弹性最佳信息融合 (FR-OIF) 范式以提供可信的姿态估计。第二层将每个节点(在第一层构建)的输出合并为加权线性组合形式,同时明确考虑最大似然融合标准。此外,在测量不准确的情况下,所提出的 FR-OIF 公式通过嵌入内置故障隔离机制实现了自我弹性。此外,FR-OIF 方案还能够在传感器故障或错误测量的情况下解决精确定位问题。为了证明所提出的融合架构的有效性,已经对微型飞行器进行了广泛的实验研究,该飞行器配备了各种机载姿态传感器,例如 3D 激光雷达、实感摄像头、超宽带节点和 IMU。所提出的新框架的效率是可扩展的
摘要 — 超宽带隙氧化镓 (Ga 2 O 3 ) 器件最近已成为电力电子领域的有希望的候选者;然而,Ga 2 O 3 的低热导率 (k T ) 引起了人们对其电热稳定性的严重担忧。这项工作首次实验演示了采用底部冷却和双面冷却配置封装的大面积 Ga 2 O 3 肖特基势垒二极管 (SBD),并首次表征了这些封装 Ga 2 O 3 SBD 的浪涌电流能力。与普遍看法相反,采用适当封装的 Ga 2 O 3 SBD 表现出很高的浪涌电流能力。具有 3×3 mm 2 肖特基接触面积的双面冷却 Ga 2 O 3 SBD 可以承受超过 60 A 的峰值浪涌电流,峰值浪涌电流与额定电流之比优于同等额定值的商用 SiC SBD。这种高浪涌电流的关键促成机制是导通电阻的温度依赖性小,这大大降低了热失控,以及双面冷却封装,其中热量直接从肖特基结提取,不需要通过低 k T 块状 Ga 2 O 3 芯片。这些结果消除了有关 Ga 2 O 3 功率器件电热耐用性的一些关键担忧,并体现了其芯片级热管理的重要性。1