摘要量子系统的基础状态的快速而忠实的准备是在基于量子的技术领域中的多个应用程序的具有挑战性但至关重要的任务。的消毒将允许的最大时间窗口限制为实验,以忠实地达到此类所需的状态。这在具有量子相变的系统中特别重要,其中消失的能量差距挑战了绝热的基态制备。我们表明,由在两个不同的外部可调参数下的时间演化组成的BANG-BANG协议允许在进化时间中进行高实现基态制备,而不必应用标准最佳控制技术所需的时间,例如切碎 - 常发送量子量子基量子量子量子。此外,由于它们的变量数量减少,此类BANG -BANG协议非常适合优化任务,从而降低了其他最佳控制协议的高计算成本。我们通过两个范式模型(即Landau – Zener和Lipkin – Meshkov – Glick模型)对这种方法进行基准测试。非常重要的是,我们发现后一个模型的关键基态,即其在临界点处的基态可以在总进化时间内以高填充率制备,该缩放比消失的能量差距慢。
引言近几十年来,超快激光器已经迅速发展为更高的性能。超快激光器具有三个关键特征,可以使其在市场领域的应用:首先,它们的短脉冲持续时间允许在时间域中进行高分辨率测量。换句话说,它们是测量高速现象的几乎完美的超快“ flash”。第二,由于激光能集中在短脉冲中,因此它们具有很高的峰值功率,这可以实现关键的材料相互作用,最重要的是“冷消融”,短光学脉冲几乎可以去除或消融任何材料,而不会在样品处理的样品中产生明显的残留热量。此技术允许对当今使用的许多现有材料和薄膜进行非常精确的微加工。它也有可能在未来产品中使用。此外,它允许新型的生物医学和组织手术应用。第三,短时脉冲具有相应的光带宽,并且可以利用此功能来进行精确的测量诊断和计量学。在几篇评论文章1,2中给出了这些功能和许多其他应用的更详细概述,并且超出了本研究的范围。半导体可饱和吸收镜(SESAM)模式的激光器与1990年代3,4期间开发的二极管泵式固态激光器(DPSSL)相结合的简单性,导致了许多新的,实用的,实用的,实用的,可商购的超级武器激光系统。这些激光系统已在许多相关应用中广泛使用,这些应用程序正在更换昂贵,渴望,维护密集型激光器。最近廉价,更紧凑的半导体磁盘激光器(SDL)的发展可能会开放新市场,例如紧凑的测量设备。此结果最终将使超快速激光器能够访问高量消费市场,例如汽车工业中的光检测和范围(LIDAR)技术
图2:介电函数的假想部分ε2(ω),作为散装(a)si和(b)lif的光子能量(eV)的函数。在这里,实验光谱显示为蓝色杂交,红线代表了使用GGA函数代替手稿中使用的LDA函数的KSP计算结果。可以看出,与实验保留的极好的一致性,实际上,与使用LDA功能进行的相同计算相比,理论吸收仅可忽略不计(与图。纸的2)
摘要:超表面作为由亚波长结构构成的人工材料,具有强大的调控线性和非线性光场的能力,极大地推动了纳米光子学的发展。最近,等离子体超表面已被证明可以作为可饱和吸收体(SA),其调制性能远高于其他SA,表现出优异的非线性偏振传递函数。然而,由于等离子体共振的偏振依赖性,超表面饱和吸收体的工作带宽通常很窄,不利于宽带超快激光的产生。本文,我们提出了一种银双纳米棒等离子体超表面,实现了稳定的宽带饱和吸收,这归功于双棒结构独特的间隙共振模式。泵浦光同时激发精心排列的银纳米棒上的偶极共振和纳米棒对之间的间隙模式,提高了超表面可饱和吸收体的响应带宽。通过将超表面插入光纤激光器腔内,分别获得了工作在1.55和1.064 μ m处的稳定脉冲序列。该工作不仅进一步释放了超表面在超快激光领域的潜力,也为宽带非线性器件的设计提供了新的思路。关键词:等离子体超表面,宽带,可饱和吸收体,超快激光器,光纤激光器
Shein 在供应商方面缺乏透明度,这使其成为该行业的落后者,只有略多于一半的对标公司披露了一级供应商名单。供应链缺乏可见性和透明度——特别是那些被美国劳工部指定为强迫劳动高风险地区(被指定为高风险的国家包括中国、缅甸、孟加拉国、印度、土库曼斯坦)的供应链,表明可能缺乏问责制,并阻碍其根据人权尽职调查标准和硬法“识别和评估”风险。Shein 面临从与政府强迫劳动有关的农场采购棉花的指控,包括其在广东省清远市一个大型工业园区的关键参与——该工业园区是一个重要的制造业中心,据称依赖新疆棉花进行生产。
色散工程和高度非线性纳米光子学的出现有望通过将高横向场约束与超短脉冲操作相结合,开辟一条通往量子光学强相互作用领域的全光学途径。然而,要全面了解此类宽带设备中的光子动力学,对多模非高斯量子物理的建模和仿真提出了重大挑战,这凸显了对复杂的简化模型的需求,这些模型有助于进行有效的数值研究,同时提供有用的物理见解。在本文中,我们回顾了我们最近在不同抽象和通用水平上对宽带光学系统建模的努力,从同步泵浦振荡器的量子输入输出理论的多模扩展到基于非线性波导场论描述的数值方法的开发。我们希望我们的工作不仅能指导正在进行的理论和实验工作,以实现下一代量子设备,还能揭示宽带量子光子学的基本物理原理。
摘要 - 在本文中,我们强烈提倡正方形 - 根协方差(而不是信息)对视觉惯性导航系统(VIN)的过滤,尤其是在资源约束的边缘设备上,因为其效率较高和数值稳定性。尽管VIN近年来取得了巨大进展,但在施加有限的单词长度时,它们仍然在嵌入式系统上面临资源的严格性和数值不稳定。为了克服这些挑战,我们开发了一种超快速和数值稳定的平方根滤波器(SRF) - 基于VINS算法(即SR-VINS)。所提出的SR-VIN的数值稳定性是从采用方形协方差继承而来的,而非新颖的SRF更新方法基于我们新的Permisted-QR(P-QR)的新型SRF更新方法可以极大地实现,该方法完全利用,该方法完全利用并适当地维持了平方英尺的上层三角形结构。此外,我们选择了状态变量的特殊订购,该变量适用于SRF传播中的(p-)QR操作,并更新并防止不必要的计算。通过数值研究对拟议的SR-VIN进行了广泛的验证,表明当最先进的(SOTA)过滤器存在数值困难时,我们的SR-VINS具有较高的数值稳定性,并且非常明显地,在32位单一的速度上,以速度快速旋转,可以像Sota一样快速地浮动32位单一的浮动效果。我们还进行了全面的现实实验,以验证所提出的SR-VIN的效率,准确性和鲁棒性。
标题:综合,超快的全光极化晶体管摘要:自从Dennard缩放大约15年前,处理器的时钟频率一直停滞在几个GHz处。尽管可以以THZ速度切换的全光晶体管可能会带来性能的飞跃,但由于低光学非线性和笨重的组件,在数十年的研究中无法实现这一承诺。现在研究了新一代设备的基础,这些设备的基础与新型材料和集成的光子结构利用了所谓的强光 - 互动制度,这些材料和集成的光子结构可以通过attojoule开关能量实现紧凑的超快全光逻辑回路[1,2]。在这项工作中,将提出朝着该目标的实验进展,包括级联的设置,其中自发的偏振子冷凝物是在一个腔(种子)中产生的,并喂入另一个空腔(晶体管)以诱导北极星冷凝[3,4]。此外,将提出亚皮秒时间尺度上的快速极性凝结动力学,并确定重要的晶体管指标,例如信号扩增(高达60倍)和开/关灭绝率(最高9:1)(最高9:1)。这些发现表明,可以开发可扩展的综合,超快全光晶体管的潜力,从而可以进行更复杂的全光逻辑电路。此外,将提出一种控制这些超快全光晶体管的方法,利用基于相位材料的记忆单元。这项工作由EU H2020 EIC Pathfinder Open Project“ Polloc”(授予协议号956071)。Photonics 13,378–383(2019)。899141)和EU H2020 MSCA-ITN项目参考文献[1] Anton V. Zideadeli,Anton V. Baranikov,Sannikov Deni,Urbon Darius,Scienty Fish,Woods。Shishkov,Evgeny S. Andrianov,Yurii E.Anton V. Zasedatele,“ Anton V. Baranikov,Urbon的Darius,Fabio Scianf,单科学,自然597, 493–497(2021)。[3] D. Urbons,“移动秋千入口的小动物”,eth diss。,no。26125,2019。[4] P. Tassan,D。Urbours,B。Climate,J。Bolten,T。Wahlbrink,M。C. Lemme,M。Forster,U.Scherf,R.F。Mahrt,T.Stöferle,超快完整性全光极化晶体管,” ARX:2404.01868V1,(2024)。
umc 2024-会议系列中的第6个 - 专用于超快自旋和磁化动力学领域,尤其是在picsecond,femtsecond and attosecond时尺度上的磁性材料中的超快动态过程。以前的UMC会议发生在Strasbourg(2013),Nijmegen(2015),Kaiserslautern(2017),York(2019)和Nancy(2022)。