摘要:二维(2D)范德华异质结合了单个2D材料的独特特性,导致超材料,非常适合新兴的电子,光电,光电和自旋形成现象。在利用这些特性用于未来的混合电路方面的一个重大挑战是它们的大规模实现并集成到石墨烯互连中。在这项工作中,我们证明了二硫化钼(MOS 2)晶体在图案化石墨烯通道上的直接生长。通过通过限制的空间化学蒸气沉积生长技术增强对蒸气转运的控制,我们实现了单层MOS 2晶体在单层石墨烯上的优先沉积。原子分辨率扫描透射电子显微镜揭示了杂结构的高结构完整性。通过深入的光谱表征,我们在石墨烯/MOS 2中揭示了电荷转移,MOS 2将p-型掺杂到石墨烯中,如我们的电气测量所证实。光电导率表征表明,可以在MOS 2层覆盖的石墨烯通道中局部创建光活性区域。时间分辨超快的超快瞬态吸收(TA)光谱揭示了在石墨烯/MOS 2异质结构中加速的电荷衰减动力学,对于以下带隙激发条件的上转换。我们的概念验证结果为范德华异质结构电路的直接增长铺平了道路,对超快光活性纳米电子和播客应用具有重要意义。关键字:石墨烯,TMD,现场效应晶体管,范德华异质结构,超快,光活动电路■简介
有机蛋白质因其独特的光学性质、卓越的机械特性和生物相容性而备受青睐。在有机蛋白质薄膜上制造多功能结构对于实际应用至关重要;然而,特定结构的可控制造仍然具有挑战性。在此,我们提出了一种通过调节有机材料的凸起和烧蚀在丝膜表面创建特定结构的策略。基于受控的超快激光诱导晶体形态转变和丝蛋白的等离子体烧蚀,产生了直径连续变化的独特表面形貌,如凸起和凹坑。由于不同周期的凸起/凹坑结构具有各向异性的光学特性,所制造的有机薄膜可用于大规模无墨彩色打印。通过同时设计凸起/凹坑结构,我们设计并展示了基于有机薄膜的光学功能装置,该装置可实现全息成像和光学聚焦。这项研究为多功能微/纳米结构的制造提供了一种有前途的策略,可以拓宽有机材料的潜在应用。
*通讯作者V. P. S. Awana博士,首席科学家CSIR-National实验室,印度电子邮件:aawana@nplindia.org ph。+91-11-45609357,传真 - +91-11-45609310
范围是采用电池电动车辆的主要问题。换档充电可替代扩展范围,而无需更重,更昂贵的电池。本文认识到每日日志卡车生产率是少数离散事件(已输送到需求点的负载)的结果。延误(例如换档充电,如果它们导致负载损失,它们就会变得非常重要。如果n是卡车可以在一天内可以输送的负载数量而无需延迟档位充电,则卡车可以使用换档充电延迟提供的预期负载是N-1 +概率,其中概率是完成最后负载的可能性。能够全天操作的较大电池和需要换档充电的较小电池之间的选择是作为盈亏平衡问题的。解决较大电池卡车赚取的净收入等于较小的电池卡车所获得的净收入的问题的价值,提供了电池尺寸的决策点。进行敏感性分析,对电池尺寸选择产生最大影响的三个因素是拖运率($/tonne),净负载差异以及大电池卡车之间的折旧成本差异。
提出了一个名为Tupi的混合像素光子计数检测器系列,以符合Orion的[1]柔性X射线梁的规格。这将是有史以来第一个连接到同步子束线的最大生物安全实验室。TUPI检测器将基于3x1 TimePix4 [2] ASIC(应用程序特定集成电路)的基本模块,该模块可以铺有瓷砖以组装较大的活动区域。基本模块具有1344 x 512像素(55μm像素尺寸),在约74 mm x 28 mm面积上达到688 kpixels。它可以在所谓的“数据驱动”模式(读取TOT和TOA数据时)达到最高11 kHz的成像采集率,并区分3 x 10 6 pH/s/mm 2,返回像素中沉积的光子能量信息。可以在16位计数深度的情况下达到近44 kHz,并且可以区分高达5 x 10 9 pH/s/mm 2的命中率。
摘要:超表面作为由亚波长结构构成的人工材料,具有强大的调控线性和非线性光场的能力,极大地推动了纳米光子学的发展。最近,等离子体超表面已被证明可以作为可饱和吸收体(SA),其调制性能远高于其他SA,表现出优异的非线性偏振传递函数。然而,由于等离子体共振的偏振依赖性,超表面饱和吸收体的工作带宽通常很窄,不利于宽带超快激光的产生。本文,我们提出了一种银双纳米棒等离子体超表面,实现了稳定的宽带饱和吸收,这归功于双棒结构独特的间隙共振模式。泵浦光同时激发精心排列的银纳米棒上的偶极共振和纳米棒对之间的间隙模式,提高了超表面可饱和吸收体的响应带宽。通过将超表面插入光纤激光器腔内,分别获得了工作在1.55和1.064 μ m处的稳定脉冲序列。该工作不仅进一步释放了超表面在超快激光领域的潜力,也为宽带非线性器件的设计提供了新的思路。关键词:等离子体超表面,宽带,可饱和吸收体,超快激光器,光纤激光器
图2:介电函数的假想部分ε2(ω),作为散装(a)si和(b)lif的光子能量(eV)的函数。在这里,实验光谱显示为蓝色杂交,红线代表了使用GGA函数代替手稿中使用的LDA函数的KSP计算结果。可以看出,与实验保留的极好的一致性,实际上,与使用LDA功能进行的相同计算相比,理论吸收仅可忽略不计(与图。纸的2)
轨道省的领域已经出现了通过启用环保电子设备来影响信息技术的巨大潜力。主要的电子自由度是轨道角动量,它可以产生无数现象,例如轨道霍尔效应(OHE),扭矩和轨道磁电效应。在这里,我们通过逼真的时间依赖电子结构仿真探索非磁性材料的磁反应,即超薄PT纤维,以对不同极化和螺旋性的超快激光脉冲。我们证明了显着的轨道和自旋磁化的产生,并确定了由OHE相互作用,反向法拉第效应和自旋轨道相互作用组成的潜在机制。我们的发现主张使用光在不是固有磁性的材料中编码磁性信息的前景。
总而言之,该研究涉及对能够分离和鉴定短核酸片段(尤其是治疗性寡核苷酸)的高级色谱方法的紧迫需求。通过使用C18AR色谱柱进行系统评估,具有不同基序和序列组成的寡核苷酸,以及模仿序列杂质的掺入,可以增强可用的分析工具,以确保基于核酸酸的治疗剂的质量和安全性。
摘要:甲基铵铅三纤维胺钙钛矿(Mapbbr 3)是重要的材料,例如,用于发光应用和串联太阳能电池。相关的光物理特性受激发态以激发态的复杂且相对较少理解的相互作用和自由电荷载体的相互作用而产生的许多现象。在这项研究中,我们在可见光和Terahertz范围内结合了瞬态光谱镜,以在各种光子能量和密度下激发时在超快时在超消极时段研究激发子和自由载体的存在。对于上述和谐振带隙激发,我们发现自由电荷和激发子共存,并且两者主要是在我们的50 - 100 fs实验时间分辨率中迅速生成的。然而,随着对谐振带隙激发的调子能量降低,激子与无电荷比增加。自由电荷签名主导了瞬时启动激发和低激发密度的瞬时吸收响应,从而掩盖了激发型特征。具有谐振带隙激发和低激发密度,我们发现尽管激发子密度增加,但仍保留自由电荷。我们表明,激子将其定位到浅陷阱和/或Urbach尾部状态中形成局部激子(在Picseconds的数十个内部),后来被逐渐降低。使用高激发密度,我们证明了多体相互作用变得明显,诸如苔藓 - 爆发的偏移,带隙重新归一化,兴奋能源排斥和Mahan激子的形成之类的作用显而易见。■简介在超快时间尺度上,我们在此处证明的激发型Mapbbr 3的激子和自由电荷的共存证实了材料对发光二极管和串联太阳能电池应用的高潜力。