摘要:进行了比较定量结构 - 保留关系(QSRR)研究,以预测使用分子描述符的多环芳烃(PAHS)的保留时间。分子描述符是由软件龙生成的,并用于构建QSRR模型。还考虑了色谱参数的影响,例如流量,温度和梯度时间。使用人工神经网络(ANN)和部分最小二乘回归(PLS-R)来研究保留时间(以响应为响应)和预测因子之间的相关性。通过遗传算法选择了六个描述符,以开发ANN模型:分子量(MW);环描述符类型NCIR和NR10;径向分布功能RDF090U和RDF030M;以及3D-MORSE的描述符MOR07U。PLS-R模型中最重要的描述符是MW,RDF110U,MOR20U,MOR26U和MOR30U;边缘邻接Indice SM09_AEA(DM);基于3D矩阵的描述符spposa_rg;和逍遥布H7U。构建模型用于预测校准集中未包含的三个分析物的保留。考虑到预测集的统计参数RMSE(分别为PLS-R和ANN模型的0.433和0.077),该研究证实了与色谱参数相关的QSRR模型可以通过非线性方法更好地描述。
5.1。一般描述和预期用途HI97771是一种自动诊断便携式光度计,从Hanna®年代作为分析仪器制造商的经验中受益。它具有高级光学系统,该系统使用发光二极管(LED)和狭窄的带干扰过滤器,该过滤器允许准确且可重复的读数。光学系统与外部灰尘,污垢和水密封。仪表使用一个独特的正锁定系统来确保每次将比色杯放置在相同位置的架中。使用CAL Check™功能,用户可以随时验证乐器的性能并应用用户校准(如有必要)。HannaInstruments®CalCheck Cuvettes由NIST可追溯标准制成。内置教程模式可以通过测量过程逐步指导用户。它包括样品制备,所需试剂和数量的所有步骤。HI97771米的测量为0.00至5.00 mg/L(ppm),总氯从0到500 mg/L(ppm)。游离氯的方法是美国EPA方法330.5,DPD色彩法的适应。总氯的方法是对水和废水检查的标准方法的适应,第20版,4500-CL。
RAFS 是 Rb 时钟。Rb 时钟本质上由压控晶体振荡器 (VCXO) 组成,该振荡器锁定在 Rb87 同位素基态中高度稳定的原子跃迁上。虽然 VCXO 的频率为方便的标准频率 10 MHz,但 Rb 时钟频率为微波范围内的 6.834 GHz。两个频率之间的链接是通过相位稳定的倍频方案实现的,其中合成频率被混合以实现精确匹配。
UNL 研究的核心领域之一是使用飞秒激光对材料进行表面结构化。本质上,这会产生明确的纳米结构,使表面具有一些非常有趣的特性,包括超疏水性、极高的发射率、防结冰特性和降低阻力。一旦理解了这些方面,将对功能表面和界面领域产生深远影响。UNL 与 Leybold 合作开发了一种高度专业化的 UHV 处理和表面分析工具,该工具基于 Leybold 的模块化 UHV 平台产品线。
钛合金具有高强度重量比、高耐腐蚀性和高熔点等优异性能,已广泛应用于航空航天工业。然而,据推测,通过对钛合金进行涂层处理,可以进一步提高其性能,使其更耐超高速撞击。早期的实验研究表明,用 Ti/SiC 金属基纳米复合材料 (MMNC) 涂覆 Ti-6Al-4V 基材可提高复合材料的抗超高速撞击性能。涂层中 SiC 的体积分数为 7%。这些实验是使用光滑粒子流体动力学 (SPH) 建模方法模拟的。Ti-6Al-4V 基材和 Lexan 弹丸使用了 Johnson-Cook 材料模型。由于缺乏对 MMNC 的详细机械特性,因此使用了双线性弹塑性材料模型来模拟涂层。在本研究中,进行了单参数敏感性分析,以通过与实验弹坑体积的比较来了解 SPH 模型的敏感性。双线性弹塑性材料模型的参数包括弹性模量、泊松比、屈服强度、切线模量和失效应变。对于体积分数为 35% SiC 的 Ti/SiC 金属基纳米复合材料 (MMNC),这些参数的变化范围为各自基准值的 ±5% 和 ±10%,并且可以获得不同应变率下的应力-应变曲线。这些值适用于整个测试速度范围。利用敏感性分析中的参数,结果表明,当没有实验数据时,可以提高 MMNC 的 SPH 建模精度。结果还表明,双线性弹塑性材料模型可用于高应变率下的 MMNC 涂层。
磁共振成像(MRI)是神经科学研究和神经系统疾病的临床诊断的众所周知且广泛的成像方式,主要是由于其能够可视化脑微观质量并量化各种代谢物。此外,它的无创性使从体内脑样本与组织学的高分辨率MRI与组织学的相关性有可能,从而支持了神经退行性疾病的研究,例如阿尔茨海默氏病或帕金森氏病。但是,离体MRI的质量和分辨率高度取决于具有最大化填充因子的专业射频线圈的可用性,用于研究样品的不同大小和形状。例如,在超高田中全身MRI扫描仪中并不总是在商业上可用的小型,专用的射频(RF)线圈。即使对于超高场临床前扫描仪,特异性RF线圈的体内MRI也很昂贵,并且并不总是可用。在这里,我们描述了两个RF线圈的设计和构造,基于7T全身扫描仪中人脑组织的螺线管几何形状以及9.4T陶醉师中Marmoset脑样品的离体MRI的体内MRI。我们设计了7T螺线管RF线圈,以最大程度地提高磁带上的人脑样品的填充因子,以进行组织学,而构建了9.4T螺线管以适应50 mL离心管的条件。两个螺线管设计都以收发器模式运行。测得的B 1 +地图显示出感兴趣的成像量的高均匀性,并且与成像量相比,信噪比高。使用9.4T螺线管线圈以60 µm的各向同性分辨率获取了人脑样品的高分辨率(在平面为500 µm切片的厚度为500 µm)。
摘要 —本文介绍了一种由工作在亚阈值区域的串联 PMOS 器件组成的新策略和电路配置,用于实现极低频有源 RC 滤波器和生物放大器所需的超高值电阻器。根据应用不同,例如生物放大器中的信号带宽可能从几 mHz 到最高 10 kHz 不等。提出了三种不同的电阻结构来实现超高阻值。虽然提出的超高阻值伪电阻器的阻值在几 T Ω 的数量级,但它们占用的片上硅片面积很小,这是超低功耗可植入生物医学微系统中模拟前端电路设计的主要问题之一。此外,这些超高阻值电阻器导致使用小电容来产生非常小的截止频率。因此,实现电容所需的大面积也大大减少。所提出的电阻结构在宽输入电压范围(-0.5 V~+0.5 V)内变化很小,约为7%和12%,从而显著改善了生物放大器的总谐波失真和系统的模拟前端。在180nm CMOS工艺中设计的不同电路的仿真结果证明了所提出的超高阻值伪电阻的优势。
摘要:以原始形式和含有碳纳米管(CNT)或Fe 2 O 3纳米颗粒(NP)(NPS)的超高分子量聚乙烯(UHMWPE)的薄薄片。CNT和Fe 2 O 3 NP的重量百分比在0.01%至1%之间。通过传输和扫描电子显微镜以及通过能量分散X射线光谱分析(EDS)来确认UHMWPE中CNT和Fe 2 O 3 NP的存在。使用衰减的总反应傅立叶转化红外(ATR-FTIR)光谱和UV-VIS吸收光谱光谱光谱光谱光谱法研究了嵌入式纳米结构对UHMWPE样品的影响。ATR-FTIR光谱显示了UHMWPE,CNTS和Fe 2 O 3的特征。关于光学性能,无论嵌入纳米结构的类型如何,都观察到光吸收的增加。从光吸收光谱中确定允许的直接光能差距值:在这两种情况下,它都随着CNT或Fe 2 O 3 NP浓度的增加而降低。将提出和讨论获得的结果。
摘要:纳米尺寸的电池型材料应用于电化学电容器中,可以有效减少电导率低、体积变化大带来的一系列问题,但这种方式会导致充放电过程以电容行为为主,造成材料的比容量严重下降。通过控制材料颗粒为合适的尺寸以及合适的纳米片层数,可以保留电池型行为而维持较大的容量。本文在还原氧化石墨烯表面生长典型电池型材料Ni(OH)2,制备复合电极,通过控制镍源的用量,制备出合适Ni(OH)2纳米片尺寸和合适层数的复合材料,在保留电池型行为的情况下获得了高容量的电极材料,制备的电极在2 A g −1 时比容量为397.22 mA hg −1。当电流密度增加到20 A g − 1 后,保持率高达84%。制备的非对称电化学电容器在功率密度为1319.86 W kg − 1 时的能量密度为30.91 W h kg − 1,20 000次循环后保持率可达79%。我们主张通过增加纳米片的尺寸和层数来保留电极材料电池型行为的优化策略,这可以显著提高能量密度,同时结合电化学电容器的高倍率性能的优势。■ 介绍
高质量的复合材料在太空应用中已经使用了几十年,主要用于载人航天器、卫星结构和航天运载火箭。它们在运载火箭中有着广泛的应用,例如固体火箭发动机和燃料和气体压力容器。许多复合材料用作重返大气层的车辆的热保护系统。碳纤维复合材料通常用于卫星结构及其有效载荷系统。1 卫星的总线结构由铝蜂窝芯和复合材料蒙皮制成。其他需要尺寸稳定性的结构由增强复合材料制成。图 1 描述了复合材料在先进空间结构中的应用示例,以及如何确定它们在受到超高速碎片影响时的性能。这些复合材料有助于在太空极端温度下保持极端尺寸稳定性。2 对更大复合结构的需求促使开发高质量的复合结构,这些结构可以用更少的接头制造这些组件,从而增加使用复合结构的好处。3