我们描述了如何将轴棱镜和透镜直接组合起来,为激光材料加工应用提供简单而有效的光束整形解决方案。我们产生了 1550 nm 的高角度伪贝塞尔微光束,这很难通过其他方法产生。结合飞秒脉冲的适当拉伸,我们可以获得半导体内部的优化条件,从而开发出高纵横比折射率写入方法。使用超快显微镜技术,我们用 200 fs 和 50 ps 脉冲表征了硅内部传递的局部强度和触发的电离动力学。虽然两种情况下产生的等离子体密度相似,但我们表明,重复的皮秒辐照会在激光束方向上自发地产生永久性的改变,从前表面损伤到辐照硅晶片的背面。与当今为电介质演示的直接微爆炸和微通道钻孔条件类似的条件仍然无法实现。尽管如此,这项工作证明了能量密度高于以前在半导体中实现的水平,并且是一种新颖的冲击写入模式,可以在硅中创建长宽比超过 ~700 的结构,而无需任何光束运动。沿观察到的微等离子体通道估计的电导率瞬态变化和测量的接近光速的电离前沿支持了在 GHz 重复率下光学可控的垂直电连接的设想。根据测量的超过 10 −2 的正折射率变化,通过冲击写入获得的永久性硅改性是光导结构。这些发现为电气和光学硅通孔的独特单片解决方案打开了大门,而硅通孔是 3D 芯片堆栈中垂直互连的关键元件。
石墨烯已被证明是复合材料的特殊增强添加剂,但其合成的高成本在很大程度上阻止了其在工业规模上的增加。Flash Joule加热提供了一种快速的,批量的方法,用于从煤炭材料(例如冶金可乐(MC))合成石墨烯,进入冶金焦源浅灰灰石墨烯(MCFG)。在这里,这项工作研究了比文献中先前报道的纳米纤维含量含量更高的石墨烯 - 环氧复合材料的特性。具有20至50 wt%的MCFG的复合材料。MCFG的比例为1:2:DGEBA,年轻的模量增加了92%,比例为1:3,硬度增加了140%。 在MCFG的1:4比率下,DGEBA,抗压强度和最大应变分别增加145%和61%。 在MCFG的1:3比例时:DGEBA,韧性增加了496%。 最后,以MCFG的1:1比率:DGEBA,温室气体排放,用水和能耗分别降低了33%,47%和34%。 作为FG坠落的成本,因为它可以由MC(如MC)(如MC),没有溶剂或水的毫秒而产生,因此前景有望在复合材料中进行高载荷。MCFG的比例为1:2:DGEBA,年轻的模量增加了92%,比例为1:3,硬度增加了140%。在MCFG的1:4比率下,DGEBA,抗压强度和最大应变分别增加145%和61%。 在MCFG的1:3比例时:DGEBA,韧性增加了496%。 最后,以MCFG的1:1比率:DGEBA,温室气体排放,用水和能耗分别降低了33%,47%和34%。 作为FG坠落的成本,因为它可以由MC(如MC)(如MC),没有溶剂或水的毫秒而产生,因此前景有望在复合材料中进行高载荷。在MCFG的1:4比率下,DGEBA,抗压强度和最大应变分别增加145%和61%。在MCFG的1:3比例时:DGEBA,韧性增加了496%。最后,以MCFG的1:1比率:DGEBA,温室气体排放,用水和能耗分别降低了33%,47%和34%。作为FG坠落的成本,因为它可以由MC(如MC)(如MC),没有溶剂或水的毫秒而产生,因此前景有望在复合材料中进行高载荷。
摘要:锌 - 碘(Zn -i 2)电池对其高能量密度,低成本和固有安全性引起了极大的关注。然而,包括聚二维溶解和穿梭,碘迟发的氧化还原动力学和低电导率的几个挑战限制了它们的实际应用。在此,我们通过将Ni单原子(NISA)均匀分散在分层多孔碳骨架(NISAS-HPC)上,为Zn-I 2电池设计了高效的电催化剂。原位拉曼分析表明,由于Nisas具有显着的电催化活性,因此使用NISAS-HPC显着加速了可溶性聚二维(I 3 - 和I 5 - )的转化。带有NISAS-HPC/I 2阴极的结果Zn-I 2电池提供了出色的速率能力(在50 C时为121 mAh g-1)和超循环稳定性(在50 c时超过40 000个循环)。即使在11.6 mg cm -2碘以下,Zn -i 2电池仍然表现出令人印象深刻的循环稳定性,其容量保留为93.4%和141 mAh g -1,在10 c.关键字上10 000循环后,关键字:锌 - 碘化物 - 碘磁带,多二维,诸如乘坐,电气效应,电型,电动
摘要:将高度多孔石墨烯(GO)气凝胶整体加热到超高温度的闪光灯加热被用作低碳足迹技术,以设计功能性气凝胶材料。首次证明了Airgel Joule加热至3000 K,并具有快速加热动力学(〜300 K·min-1),从而实现了快速和节能的闪光加热处理。在一系列材料制造的挑战中利用了超高温度闪光灯焦耳加热的广泛适用性。超高温度焦耳加热用于快速在快速时间尺度(30-300 s)的水热气凝凝胶快速地石墨退火,并大大降低了能量成本。闪光气凝胶加热至超高温度,用于原位合成超铁纳米颗粒(PT,CU和MOO 2)的原位合成,并嵌入了混合气瓶结构中。冲击波加热方法可以使形成的纳米颗粒的高渗透量均匀性,而纳米颗粒的大小可以通过控制1到10 s之间的焦耳加热持续时间来轻松调节。因此,此处介绍的超高温度加热方法对基于石墨烯的气凝胶的多种应用具有重要意义,包括3D热电材料,极端温度传感器和流动中的气瓶催化剂(电)化学。■简介
微生物在牛奶中的失活效应是确保产品质量的重要因素。超高压力处理技术已被广泛使用,因为它可以更好地维护食物的原始颜色,香气,味道和营养成分。为了提高检测效率并有效地适应市场,将非破坏性测试技术引入超高压力灭菌非常重要。本文
未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者(此版本于 2023 年 7 月 15 日发布。;https://doi.org/10.1101/2023.07.15.549169 doi:bioRxiv preprint
Cian Cummins,Alberto Alvarez-Fernandez,Ahmed Bentaleb,Georges Hadziioannou,Virginie Pon-Sinet等。Langmuir,2020,36(46),pp.13872-13880。10.1021/acs.langmuir.0c02261。hal-03033202
摘要:据报道,杜松子中的植物会产生各种化学成分,例如香豆素,氟亚avonoids,lignans,sterols和terpenoids。在这里,超高性液相色谱以及四极时间质量光谱法(UPLC-qTOF-MS)和超高液相色谱量表质谱法(UPLC-QTOF-MS)和超高的液相色谱质谱法(UPLC-MS/MS)的定性分析,并在定性上进行了分析,并将其用于主要的分析,以分析易生生物的组合,以侵略性分析的组合量。 Juniperus Chinensis L.,在韩国自然生长。此外,研究了针对致病细菌的粗提取物的抗菌活性。使用LC-QTOF-MS分析,我们确定了十种化合物,其中六种被确定为avonoid和基于lignan的成分,是主要的生物活性成分,即isoquercetin,quercetin-3-3- o-α-α-α-
材料和方法:前瞻性招募的十名先前接受过常规EID-CT的颅内囊性动脉瘤患者。CT血管造影是在UHR模式下的临床双源PCD-CT上获取的,并使用四个血管核(BV36,BV40,BV44,BV48)重建。评估了颅内动脉的定量和定性图像质量参数。为定量分析(图像噪声,SNR,CNR),一位作者手动将目标区域放置在标准的解剖颅内和颅外位置。此外,定量评估血管边界的清晰度。进行定性分析,三位盲神经放射学家评估了5点李克特型型量表,评估了颅内血管(即动脉瘤和九个标准血管分支位置)的PCD-CT和EID-CT图像质量。此外,读者在PCD-CT上评估的四个内核中独立选择了其首选内核。
抽象的传统超高性能混凝土(UHPC)具有卓越的开发潜力。然而,在整个水泥制造过程中产生了大量的CO 2,这与当前在全球范围内降低排放和保存能量的趋势相反,从而限制了UHPC的进一步发展。考虑到气候变化和可持续性问题,无水泥,环保,碱活化的UHPC(AA-UHPC)材料最近受到了广泛关注。在旨在降低实验工具和人工成本的高级预测技术的出现之后,本研究提供了基于机器学习(ML)算法的不同方法的比较研究,以提出一种基于活跃的学习ML模型(AL-STAKED ML),以预测AA-UHPC的压缩强度。收集了包含284个实验数据集和18个输入参数的数据丰富的框架。对可能影响AA-UHPC抗压强度的输入特征的重要性进行了全面评估。结果证实,在本研究中已经测试过的不同一般实验标本的堆叠式ML-3可用于98.9%的AL-3。主动学习可以提高精度高达4.1%,并进一步增强堆叠的ML模型。此外,通过实验测试引入并验证了图形用户界面(GUI),以促进可比的前瞻性研究和预测。