新兴结果表明,不受控制的宿主免疫反应会导致一种称为细胞因子释放综合征(也称为“细胞因子风暴”)的危及生命的疾病,而这是重症 COVID-19 病理的主要驱动因素。在此次大流行中,人们正致力于寻找增加对 COVID-19 并发症的易感性或抵抗力的宿主基因组因素,并将这些发现转化为改善患者护理。在这方面,据报道趋化因子受体-配体关系在重症 COVID-19 疾病发病机制及其治疗中具有潜在重要性。HIV 感染和疾病进展研究已获得了有关趋化因子受体-配体关系的宝贵基因组见解。将这些知识与新发现的与 COVID-19 相关的潜在宿主基因组因素相结合,可能使我们更全面地了解 COVID-19 患者的发病机制和治疗结果。
所有生物都通过其中发生的过程和关系互连。是器官的相互依赖性,形成了整体复合物。在进化过程中,某些物种中的免疫系统已被完善。但是,如果过敏或异物渗透,可能会造成严重损害。免疫系统是一个障碍,可保护生物体免受外部和内部影响。人体的免疫反应是人体最基本和最重要的功能之一。当化学或生物学性质的看似无害的抗原进入人体时,免疫系统会激活抗体以防止抗原在体内繁殖。作为炎症的一部分,动员免疫系统,免疫细胞检测到对血管和淋巴系统损害的程度和严重程度。随后,通过免疫能力细胞的反应清除或阻止过敏原扩散。
炎症反应与几乎所有疾病的发生和发展有关,包括慢性肝病。虽然炎症是肝损伤所有阶段的特征,但慢性肝损伤的具体病因,即酒精或代谢相关、病毒或自身免疫,可以调节肝脏内炎症环境的特征 (1)。炎症环境由细胞和可溶性因子的复杂混合物控制,这些因子在有害刺激下相互作用,以解决损伤或感染因子 (1-3)。从机制上讲,适当和有效的免疫细胞运输对于宿主防御病原体和应对损伤至关重要。细胞因子、白细胞介素和补体在有害刺激下直接作用于组织,而趋化因子则协调细胞浸润到组织内损伤部位的动态 (4,5)。过去二十年来对趋化因子系统的研究已经确定了这些炎症介质在肝病中发挥的多种作用。本综述的重点是整合与慢性肝病和肝纤维化有关的趋化因子生物学的当前知识,并期待趋化因子系统为患者带来有意义的改善。我们根据叙述性综述报告清单(可在 https://dmr.amegroups 上找到)撰写了以下文章。
摘要:针对细胞毒性 T 淋巴细胞相关蛋白 4 (CTLA-4) 和程序性死亡受体 1 (PD-1) 或其配体 1 (PD-L1) 的免疫检查点阻断抑制剂 (CBI) 改变了许多癌症患者的前景。从转化的角度来看,这一显著进展凸显了免疫细胞在控制肿瘤进展中的重要性。仍有改进空间,因为目前的 CBI 疗法只使少数患者受益。此外,干扰免疫检查点受体经常会导致免疫相关不良事件 (irAE),并在某些患者中产生危及生命的后果。肿瘤微环境 (TME) 中的免疫抑制细胞,包括肿瘤内调节性 T (Treg) 细胞、肿瘤相关巨噬细胞 (TAM) 和髓源性抑制细胞 (MDSC),会促进肿瘤进展并与不良疾病前景相关。最近的报告显示趋化因子受体 CCR8 在肿瘤 Treg 细胞上有选择性表达,这使得 CCR8 成为转化研究中有希望的靶点。在这篇综述中,我总结了我们目前对 CCR8 在生理和病理生理过程中的细胞分布和功能的了解。讨论包括评估去除表达 CCR8 的细胞可能如何影响抗肿瘤免疫以及远程位点的免疫稳态。基于这些考虑,CCR8 似乎是未来转化研究中值得考虑的一个有希望的新靶点。
摘要:胶质母细胞瘤(GBM)的中位患者生存期为15个月,仍然是死去的恶性肿瘤之一。尽管付出了巨大的努力,但由于各种耐药机制,治疗方案无法延长GBM患者的总生存率。趋化因子信号作为肿瘤微环境的一部分,在神经胶质作用,增殖,新生血管形成,转移和肿瘤进展中起关键作用。In this review, we aimed to investigate novel therapeutic approaches tar- geting various chemokine axes, including CXCR2/CXCL2/IL-8, CXCR3/CXCL4/CXCL9/CXCL10, CXCR4/CXCR7/CXCL12, CXCR6/CXCL16, CCR2/CCL2, CCR5/CCL5 and GBM的临床前和临床研究中的CX3CR1/CX3CL1。,我们将靶向疗法作为单疗法,与护理标准相结合,抗血管生成治疗以及免疫疗法。我们发现临床前和临床研究中有许多拮抗剂,抗体,细胞和疫苗的治疗方法。此外,有针对性的疗法与其他已建立的治疗应用结合使用了最高的效率。新颖的趋化因子靶向therapies主要在临床前模型中进行了检查。但是,临床应用是吉祥的。因此,广泛研究最近开发的临床前方法至关重要。应在临床研究中研究有希望的临床前应用,以创建新的治疗方案并克服对GBM治疗的耐药性。
控制细胞的迁移并影响肿瘤免疫微环境的组成(4)。一些趋化因子,例如CXCL9,CXCL10,CXCL11,CXCL16,促进了一种免疫抑制环境,可改善直流活化并将T细胞转移到肿瘤上(4,5)。相反,CCL2,CCL5,CXCL1,CXCL8和CXCL12可以通过RT诱导,并且具有募集抑制性免疫细胞和抑制效应T细胞的相反作用,并且通常与治疗结果不良相关(6-8)。鳞状细胞癌抗原1(SCCA1),由serpinb3基因基因座编码,现在称为serpinb3,是一种高度保守的半胱氨酸蛋白酶抑制剂,与溶酶体泄漏后与溶酶体蛋白酶相互作用并防止细胞死亡(9)。我们最近证明了Serpinb3还通过预防溶酶体诱导的RT诱导的细胞死亡来保护神经肿瘤细胞(10)。在许多癌症中,serpinb3/scca(用于测量循环serpinb3的基于Eli-sa的临床测定仍称为“ SCCA”)在肿瘤或癌症患者的循环中高度表达
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2020 年 3 月 5 日发布。;https://doi.org/10.1101/2020.03.04.960179 doi:bioRxiv preprint
目的:肾上腺皮质癌(ACC)是一种罕见但具有侵略性的内部收蛋白肿瘤,治疗选择有限。临床前研究结合了这种癌症类型中趋化因子受体4(CXCR4)的过表达。这项研究旨在分析使用68 GA-PentixAfor进行CXCR4成像的作用,以进行ACC分期和选择CXCR4定向的内放射疗法的患者。方法:组织学证明的先进,转移的ACC患者在3±4天的时间间隔内接受了18 F-FDG PET/CT和68 GA-PENTIXAFOR PET/CT,以评估CXCR4定向的内部疗法的适用性。扫描回顾性地分析了肿瘤病变的ACC和SUV最大/平均值的视觉范围。68 Ga-Pentixafor PET与18 F-FDG PET(参考成像标准)进行了比较。与同一器官内的背景活动相比,考虑到患者的病史,先前的治疗和CXCR4表达,所有患者的患者病史,先前的治疗和CXCR4表达的适合性。结果:所有患者的病变对18 F-FDG和68 Ga-Pentixa的Petand均为阳性,被评为疾病阳性。在2例患者中(7%),68名Ga-Pentixafor PET鉴定出更多的病变,而18例F-FDG PET。 通过双追踪成像提供了5例(17%)和10例患者(33%)(33%),互补和可比较的信息。 在13例患者中(43%),与68 Ga-Pentixa的PET相比,通过18 F-FDG PET鉴定出更多的肿瘤病变。 在68 Ga-Pentixafor的SUV最大值/平均值中,恶性病变的18 F-FDG摄取量明显高(P <0.01)。在2例患者中(7%),68名Ga-Pentixafor PET鉴定出更多的病变,而18例F-FDG PET。通过双追踪成像提供了5例(17%)和10例患者(33%)(33%),互补和可比较的信息。在13例患者中(43%),与68 Ga-Pentixa的PET相比,通过18 F-FDG PET鉴定出更多的肿瘤病变。在68 Ga-Pentixafor的SUV最大值/平均值中,恶性病变的18 F-FDG摄取量明显高(P <0.01)。总体而言,有70%的患者被评为适合或可能适合CXCR4定向治疗的患者。结论:68 Ga-Pentixafor允许晚期ACC患者的CXCR4表现进行体内成像,并可以作为选择患者的伴随诊断工具,以选择潜在的CXCR4定向内部疗法。70%的晚期转移ACC患者可能
1 纽约大学牙科学院分子病理生物学系,纽约,纽约州 10010,美国。2 纽约大学牙科学院 NYU 疼痛研究中心,纽约,纽约州 10010,美国。3 贝尔法斯特女王大学 Wellcome-Wolfson 实验医学研究所,贝尔法斯特,BT9 7BL,英国。4 哥伦比亚大学哥伦比亚大学瓦格洛斯内外科医学院外科系,纽约,纽约州 10032,美国。5 目前所属:哥伦比亚大学瓦格洛斯内外科医学院精神病学和分子药理学与治疗学系,纽约,纽约州 10032,美国 6 东北大学药学研究生院,宫城县仙台 980-8578,日本。 7 京都大学药学研究生院,京都 606-8501,日本。 * 贡献相同且为共同第一作者 # 通讯作者 摘要
来自 1 亚琛工业大学,生物学研究所 I,植物分子细胞生物学部,德国亚琛;2 路德维希马克西米利安大学 (LMU),LMU 大学医院,血管生物学主席,中风和痴呆症研究所 (ISD),德国慕尼黑;3 慕尼黑亥姆霍兹中心,德国环境健康研究中心,网络生物学研究所 (INET),德国慕尼黑诺伊尔贝格;4 慕尼黑亥姆霍兹中心,德国环境健康研究中心,糖尿病和肥胖研究所,单克隆抗体核心设施,德国慕尼黑诺伊尔贝格;5 索菲亚农业生物技术研究所,法国蔚蓝海岸大学,法国国家农业与环境科学研究院,法国索菲亚安提波利斯; 6 德国哥廷根大学、阿尔布雷希特·冯·哈勒研究所和哥廷根分子生物科学中心 (GZMB)、植物生物化学系;7 德国哥廷根大学、哥廷根分子生物科学中心 (GZMB)、代谢组学和脂质组学服务部;8 德国路德维希马克西米利安大学 (LMU)、生物学院、微生物-宿主相互作用系主任、普拉内格-马丁斯里德;9 德国慕尼黑系统神经病学集群 (SyNergy)