A01 Mm.235137 NM_007926 Aimp1 氨酰 tRNA 合成酶复合物相互作用多功能蛋白 1 A02 Mm.103205 NM_007553 Bmp2 骨形态发生蛋白 2 A03 Mm.1283 NM_011329 Ccl1 趋化因子(CC 基序)配体 1 A04 Mm.4686 NM_011330 Ccl11 趋化因子(CC 基序)配体 11 A05 Mm.867 NM_011331 Ccl12 趋化因子(CC 基序)配体 12 A06 Mm.41988 NM_011332 Ccl17 趋化因子(CC 基序)配体 17 A07 Mm.424740 NM_011888 Ccl19 趋化因子(CC 基序)配体 19 A08 Mm.290320 NM_011333 Ccl2 趋化因子(CC 基序)配体 2 A09 Mm.116739 NM_016960 Ccl20 趋化因子(CC 基序)配体 20 A10 Mm.12895 NM_009137 Ccl22 趋化因子(CC 基序)配体 22 A11 Mm.31505 NM_019577 Ccl24 趋化因子(CC 基序)配体 24 A12 Mm.1282 NM_011337 Ccl3 趋化因子(CC 基序)配体 3 B01 Mm.244263 NM_013652 Ccl4 趋化因子(CC 基序)配体 4 B02 Mm.284248 NM_013653 Ccl5 趋化因子(CC 基序)配体 5 B03 Mm.137 NM_009139 Ccl6 趋化因子(CC 基序)配体 6 B04 Mm.341574 NM_013654 Ccl7 趋化因子(CC 基序)配体 7 B05 Mm.42029 NM_021443 Ccl8 趋化因子(CC 基序)配体 8 B06 Mm.416125 NM_011338 Ccl9 趋化因子(CC 基序)配体 9 B07 Mm.274927 NM_009912 Ccr1 趋化因子(CC 基序) 受体 1 B08 Mm.8021 NM_007721 Ccr10 趋化因子 (CC 基序) 受体 10 B09 Mm.6272 NM_009915 Ccr2 趋化因子 (CC 基序) 受体 2 B10 Mm.57050 NM_009914 Ccr3 趋化因子 (CC 基序) 受体 3 B11 Mm.1337 NM_009916 Ccr4 趋化因子 (CC 基序) 受体 4 B12 Mm.14302 NM_009917 Ccr5 趋化因子 (CC 基序) 受体 5 C01 Mm.8007 NM_009835 Ccr6 趋化因子 (CC 基序) 受体 6 C02 Mm.442098 NM_007720 Ccr8 趋化因子(CC 基序)受体 8 C03 Mm.4861 NM_011616 Cd40lg CD40 配体 C04 Mm.795 NM_007778 Csf1 集落刺激因子 1(巨噬细胞) C05 Mm.4922 NM_009969 Csf2 集落刺激因子 2(粒细胞-巨噬细胞) C06 Mm.1238 NM_009971 Csf3 集落刺激因子 3(粒细胞) C07 Mm.103711 NM_009142 Cx3cl1 趋化因子(C-X3-C 基序)配体 1 C08 Mm.21013 NM_008176 Cxcl1 趋化因子(CXC 基序)配体 1 C09 Mm.877 NM_021274 Cxcl10 趋化因子(CXC 基序)配体 10 C10 Mm.131723 NM_019494 Cxcl11 趋化因子(CXC 基序)配体 11 C11 Mm.303231 NM_021704 Cxcl12 趋化因子(CXC 基序)配体 12 C12 Mm.10116 NM_018866 Cxcl13 趋化因子(CXC 基序)配体 13 D01 Mm.64326 NM_011339 Cxcl15 趋化因子(CXC 基序)配体 15 D02 Mm.4660 NM_009141 Cxcl5 趋化因子(CXC 基序)配体 5 D03 Mm.766 NM_008599 Cxcl9 趋化因子(CXC 基序)配体 9 D04 Mm.234466 NM_009909 Cxcr2 趋化因子(CXC 基序)受体 2 D05 Mm.12876 NM_009910 Cxcr3 趋化因子(CXC 基序)受体 3 D06 Mm.6246 NM_007551 Cxcr5 趋化因子(CXC 基序)受体 5 D07 Mm.3355 NM_010177 Fasl Fas 配体(TNF 超家族,成员 6) D08 Mm.240327 NM_008337 Ifng 干扰素伽马 D09 Mm.379327 NM_008348 Il10ra 白细胞介素10 受体,α
摘要:肿瘤相关巨噬细胞 (TAM) 水平升高是大多数癌症预后不良的指标。尽管阻断巨噬细胞向肿瘤募集的抗体和小分子正在作为抗癌疗法接受评估,但这些策略并不针对巨噬细胞亚群。在此,我们报告了第一种酶激活趋化因子结合物,可有效靶向活体肿瘤中的特定巨噬细胞亚群。我们的构建体利用趋化因子受体(例如 CCR2)的高表达和 TAM 中半胱氨酸蛋白酶的活性,选择性地靶向这些细胞,而不是其他巨噬细胞和免疫细胞(例如中性粒细胞、T 细胞、B 细胞)。此外,我们证明蛋白酶激活趋化因子与荧光和治疗性物质兼容,为设计针对肿瘤微环境中免疫细胞的靶向治疗诊断探针开辟了新途径。
Florian Leuschner 3、Steven L. Brody 1,2、Robert J. Gropler 1、Daniel Kreisel *4,5、Kory J. Lavine *2,5,6、
免疫反应高度取决于免疫细胞对次生淋巴机器人器官(SLO)的有效传输。非典型趋化因子受体(ACKRS)清除趋化因子从细胞外空间中消除它们,从而产生引导白细胞的梯度。与规范趋化因子受体相反,ACKR不会诱导导致细胞迁移的经典细胞内信号传导。最近,ACKR3的最接近GPR182的亲戚已被部分脱字为潜在的新型ACKR。我们通过确定将GPR182分类为广泛清除趋化因子受体的进一步的配体来确认并扩展了先前的研究。我们验证了受体的“非典型”性质,其中规范性G蛋白依赖性细胞内信号在配体刺激后未激活。然而,B-甲蛋白是非配体独立的内在化和趋化因子清除所必需的,而C末端则部分可分配。在没有体内GPR182的情况下,我们观察到血清中的趋化因子水平升高,也观察到SLO间质中的趋化因子水平。我们还揭示了不结合任何其他ACKR的CXCL13和CCL28被GPR182绑定并有效地清除。此外,我们在调节血清CXCL12水平的GPR182和ACKR3之间以及在控制CCL20水平的GPR182和ACKR4之间存在合作关系。此外,我们在GPR182-KO小鼠中揭示了一种新的表型,在该小鼠中,我们观察到一个大小和细胞的边缘区(MZ),因此在T非依赖性抗体反应中。综上所述,我们和其他人揭示了一种新颖的,广泛的趋化因子受体,我们建议将其命名为ACKR5。
细胞迁移和激活(5)。除了“经典”趋化受体外,趋化因子还会与非典型趋化因子受体 (ACKR) 结合,这是一类无法激活 G 蛋白或诱导趋化性的受体。这类受体可以通过趋化因子清除、趋化因子转胞吞和形成趋化梯度来调节局部炎症和免疫反应 (5)。C – C 基序趋化因子受体样 2 (CCRL2) 是一种与 CC 趋化因子受体密切相关的分子,与 ACKR 类似,它缺乏通过 G 蛋白发出信号的能力。然而,与 ACKR 不同的是,CCRL2 结合非趋化因子趋化蛋白趋化素,并且不会激活 b -arrestin 依赖性信号传导 (6 – 8)。因此,CCRL2 不会经历高速率内化或促进从细胞外液中清除配体 (6, 9),而是作为一种分子发挥作用,将配体固定并可能集中在表达 CCRL2 的细胞(如内皮细胞)表面 (10, 11)。该过程有助于促进表达 CMKLR1(最近更名为趋化因子 1;参考文献 12),即信号趋化因子受体的循环白细胞的 b 1 整合素依赖性停滞和粘附 (11),例如在单核细胞、树突状细胞 (DC) 和自然杀伤 (NK) 细胞 (13, 14) 的情况下。肺内皮细胞构成一层薄屏障,具有在空气和血液之间进行气体交换的专门功能,位于白细胞外渗的部位。最近,单细胞转录组分析揭示了小鼠和肺内皮细胞的异质性 (15, 16)。我们之前曾报道,CCRL2 的表达在遗传和化学诱导的肺癌实验模型中保护小鼠。这一作用基于 CCRL2 在 NK 细胞向肺募集和抗肿瘤免疫监视协调中的非冗余作用 (17)。在这里,我们报告 CCRL2 在 NK 细胞协调抗肿瘤反应中的作用是肺的一个特殊特性。通过结合遗传和转录方法以及整合单细胞 RNA 测序 (scRNA-seq)
传染病每年导致全球超过 1700 万人死亡。[1] 当病原体进入宿主时,细胞因子和趋化因子充当宿主组织细胞和免疫系统之间信息交换的介质。[2] 多项研究报告称,在感染的早期阶段,血液中的促炎趋化因子会升高 [3,4],包括目前正在发生的 COVID-19 大流行。[5,6] 感染事件后细胞因子和趋化因子积累的时间曲线决定了宿主内感染的时间进程和严重程度。因此,监测细胞因子和趋化因子的时间曲线有助于症状前检测和患者分层,从而实现循证临床管理。干扰素诱导蛋白 (IP-10) 和肿瘤坏死因子相关凋亡诱导配体 (TRAIL) 与 C 反应蛋白 (CRP) 结合被认为是病毒或细菌感染患者高度相关的生物标志物。[7,8] 据报道,在细菌和病毒感染期间,这些生物标志物的血液水平会升高,从而导致包括脓毒症和急性呼吸窘迫综合征在内的严重疾病。[9] Oved 等人描述了 IP-10、TRAIL 和 CRP 的组合作为确定和分类细菌或病毒感染的分类方法。[7] 据报道,COVID-19 阳性患者的 IP-10 水平也有所升高。[10,11] 此外,在由 SARS CoV、SARS CoV2 和中东呼吸综合征 (MERS) 冠状病毒引起的严重急性呼吸综合征 (SARS) 中也观察到了 IP-10 水平升高。 [6,12—14] IP-10 被认为是呼吸道感染的明确标志,因为肺上皮气道细胞是 IP-10 的主要产生者。[13,14] 图 1 A 概述了涉及上皮细胞中 IP-10 产生的信号通路,该通路导致激活细胞防御。在受感染的宿主中,模式识别系统导致干扰素-γ 和肿瘤坏死因子-α (TNF-α) 的刺激,这反过来又通过 JAK/STAT1 机制导致 IP-10 的释放。[15] 这种机制激活 T h1 细胞对病原体攻击的先天免疫力。[16,17] TRAIL 在免疫疗法中起关键作用,在诱导细胞凋亡方面至关重要。[18,19] 图 1B 提供了
多发性硬化症是一种自身免疫性疾病,免疫系统会攻击神经髓鞘。致病性 Th17 细胞和调节性 Treg 细胞(均表达趋化因子受体 CCR6)之间的平衡对于确定疾病活动至关重要。据推测,由血脑屏障产生的 CCL20(CCR6 的同源配体)会将这些免疫细胞吸引到中枢神经系统 (CNS)。然而,CCR6 敲除 (KO) 小鼠中多发性硬化症实验模型的病理表型尚无定论,而 CCL20-KO 小鼠中尚未解决这一问题。为了解决这个问题,我们使用 CRISPR/Cas9 系统生成了 CCL20-KO 和 CCR6-KO 小鼠。与野生型 (WT) 小鼠相比,两种突变小鼠中实验性自身免疫性脑脊髓炎 (EAE) 慢性期的临床表型略有加重。 KO 小鼠和 WT 小鼠的中枢神经系统炎症细胞浸润和脱髓鞘相似。突变小鼠和 WT 小鼠的中枢神经系统 CD4 + T 细胞计数相同。突变小鼠和 WT 小鼠中枢神经系统 Th17 和 Treg 细胞的比例,或中枢神经系统 IL-17 和 TGF- b mRNA 表达没有显著差异。这些发现表明,CCL20/CCR6 介导的细胞迁移不一定是 EAE 发病所必需的,并且可能由其他趋化因子信号补偿。© 2022 Elsevier Inc. 保留所有权利。
细胞因子和趋化因子是严格调节的,滥交分泌的蛋白质,可调节细胞生长,分化,功能和迁移。这些为免疫器官和组织中的免疫细胞传递和正确定位提供了提示,并诱导了免疫反应的发展,该免疫反应调整为免疫侮辱。细胞因子的主要类别包括白细胞蛋白酶,干扰素和肿瘤坏死因子(TNF)的成员。目前已经识别出40多个白介素,并且可能具有不同的和重叠的功能(1)。TNF超家族将其名称归功于最初发现的第一个成员TNF,该成员最初被发现诱导肿瘤中的坏死(2,3)。该超家族由19种蛋白质组成,其中一些蛋白具有pro炎性,而另一些则具有抗炎性特性。趋化因子由47个小(8-10 kDa)蛋白组成,它们具有诱导定向细胞迁移(趋化性)的主要能力。趋化因子可以与两种典型受体结合,这些受体与G蛋白相对并刺激细胞迁移和非典型受体,这些受体是调节趋化因子可用性的清除剂(4,5)。细胞因子和趋化因子与许多病理有关,包括过敏,自身免疫性和肿瘤发育和进展,通常被视为治疗靶标。该集合包含有关主要白介素超家族之一IL-1的演变和作用的评论;关于TNF A抑制癌症治疗的潜力;以及对特应性皮炎IL-13抑制剂的效率和安全性的系统综述和荟萃分析。此外,存在两份原始研究文章:具有非典型功能的CXCR3同工型的特征,以及3D细胞迁移装置中趋化因子梯度形成的研究。
3 巴黎大学,法国巴黎。 4 法国巴黎巴斯德研究所转化免疫学实验室。 5 BIOASTER,法国里昂。 6 法国巴黎 INSERM UMR-S1124,干细胞、信号和朊病毒团队。 7 INSERM UMR - S1109,法国斯特拉斯堡大学医学院、OMICARE 大学医院联盟、斯特拉斯堡转化医学联盟 (FMTS)。 8 法国斯特拉斯堡大学医院国家罕见自身免疫性疾病参考中心 RESO 临床免疫学和内科系。 9 法国斯特拉斯堡大学 UFR 医学院。 10 IRIM,蒙彼利埃大学,CNRS UMR 9004,蒙彼利埃,法国。 11 法国巴黎公立医院内克尔大学医院儿科血液学-免疫学和风湿病学科、RAISE 罕见疾病参考中心。
趋化因子受体是细胞表面受体,在不同的生理过程中发挥着重要作用:胚胎发生、炎症反应、发育、白细胞归巢等。这些受体嵌入细胞膜,可形成同型二聚体、异型二聚体和寡聚体1,均为功能性构象。趋化因子受体在细胞膜上的组织和动力学影响其行为以及细胞对趋化因子梯度的反应2,3。肌动蛋白细胞骨架重塑、细胞膜脂质组成或寡聚化的改变会损害正常细胞反应。一些证据表明异二聚体具有功能性,因此有必要分析它们在细胞表面的动态,以及配体如何对其进行修饰。4,5 CXCR4(一种常规趋化因子受体)和非典型趋化因子受体 ACKR3 形成异二聚体。ACKR3 识别两种配体,CXCL11 和 CXCL12,而 CXCR4 仅识别 CXCL12。因此,这是一个非常好的系统,可以分析这两种受体在细胞表面的动态,以及配体如何对其进行修饰。4,5由于 CXCR4 和 ACKR3 共享一个配体,并通过不同的途径发出信号,该模型可以解释趋化因子受体异二聚体是否具有与单个受体形成的二聚体相似的动力学,或者相反遵循不同的特征,当与配体一起激活时,它如何影响复合物,以及产生的功能后果是什么。全内反射显微镜 (TIRF-M) 是一种新的先进荧光技术,在研究膜过程方面具有巨大潜力。2,3 当显微镜的入射光完全反射时,在盖玻片和细胞培养基之间的界面上会产生衰减波。这种物理现象允许与盖玻片接触的细胞荧光染料被激发,因此非常适合研究细胞膜相关现象。此外,TIRF-M 允许单粒子跟踪 (SPT)。在我们的案例中,对瞬时转染了与单体绿色荧光蛋白 (Ac-GFP) 偶联的趋化因子受体的细胞进行分类,以获得模拟生理条件的低受体表达细胞群。以人类 T 淋巴细胞为模型,我们研究了当人类 T 细胞表达两种受体 (CXCR4 和 ACKR3) 和仅表达 ACKR3 时 CXCR4 和 ACKR3 的动态。当人类 T 细胞不表达 CXCR4 时,ACKR3 寡聚化对共享配体 CXCL12 的响应要低得多。这些差异可能会影响信号传导特性和功能响应。