本论文包含我对 LHC 上 ATLAS 实验中质子-质子碰撞物理研究工作的两个不同方面。第一部分侧重于理解和开发校准系统,以便在过渡辐射跟踪器中获得最佳带电粒子重建。本论文中解释的方法是 TRT 中当前使用的校准技术,它适用于 ATLAS 收集的所有数据。由于开发的方法,实现了探测器设计分辨率,甚至在 TRT 的中心区域得到了改进。在第二部分中,介绍了三种不同的分析。由于我对跟踪的兴趣以及 LHC 上可用的新能量范围,第一个分析是研究 900 GeV 和 7 TeV 的多粒子相关性。这项分析是使用 2010 年收集的第一批 ATLAS 数据进行的。研究了两个不同的方面:高阶矩和尝试测量 η 箱中的归一化阶乘矩。本论文中描述的另外两个数据分析侧重于发现超出标准模型的物理学。同号顶夸克和 b 型第四代夸克的搜索就是其中之一。对于这项分析,详细研究了使用错误电荷测量重建轻子的概率。开发了新的数据驱动方法,其中似然技术表现出色,并被 ATLAS 中的其他分析所采用。这项搜索表明数据与标准模型预期一致。最后的分析是寻找最终状态中有两个轻子且横向能量缺失较大的超对称性。详细描述了双玻色子的产生,这是本次分析的主要背景之一。最终测量结果显示,相对于标准模型的预期,没有超出。
太阳能跟踪器将太阳能光伏面板或浓缩太阳反射器或镜头朝向太阳,以最大化照射。随着太阳在天空中移动时,太阳在天空中的位置随着一天的季节和时间而变化。如果板的位置始终是静态的,那么在一天过程中由太阳能电池板拦截的太阳能不会最大化。动态定向的太阳能电池板每天都可以追踪太阳,从而大大提高能量收集。