○ Introduction to Particle Flow ○ Insights into the Neural Network Design ○ Metrics Overview: Building Blocks for Evaluation ○ Dataset - Jet-like Particle Gun ○ Results - Energy and Angular Resolution ○ Results - Reconstructed Mass ○ Results - Efficiency and Fake Rates ○ Results - Particle Identification 3.摘要和下一步
Beta 方法包括应用可变 D 步骤,以便系统在瞬态状态下快速响应,而在永久状态下无振荡 [32]。所述增加是参数β的函数,该参数β是在每个采样中根据操作点[32]和面板的特征参数计算的。MPP 中的这一参数对于不同的大气条件保持在一个小范围内,并且随着远离 MPP [9]、[11] 而变化。因此,虽然复杂性更高,但可以获得更精确和更快的操作。主要缺点是需要提前知道光伏组件的参数[9],以计算不同大气条件下MPP中的β区间。
摘要:天基目标监视对航天安全具有重要意义。然而,随着空间环境的日益复杂,恒星目标和强噪声干扰给空间目标检测带来了困难。同时,由于资源限制,星载处理平台难以兼顾实时性和计算性能。异构多核架构具备相应的处理能力,为天基应用提供了兼具实时性和计算性能的硬件实现平台。本文首次提出了一种光学图像序列中空间目标的多阶段联合检测与跟踪模型(MJDTM)。该模型结合改进的局部对比度法和卡尔曼滤波对潜在目标进行检测和跟踪,并利用运动状态的差异对恒星目标进行抑制。然后,建立了基于现场可编程门阵列(FPGA)和数字信号处理器(DSP)的异构多核处理系统,作为天基图像处理系统。最后,在上述图像处理系统上对MJDTM进行了优化和实现。使用模拟和实际图像序列进行的实验检验了MJDTM的准确性和效率,其检测概率为95%,而误报率为10 −4 。实验结果表明,该算法硬件实现仅需22.064 ms即可检测出1024×1024像素图像中的目标,满足天基监视的实时性要求。
传感器融合中不同系统和数据源的跟踪和识别特性分析 Dean A. Wilson—美国海军中尉 弗吉尼亚理工大学航空工程学士,1990 年 航空工程硕士 –2001 年 6 月 导师:Russell Duren,航空工程系 联合导师:Gary Hutchins,电气工程系 在指挥和控制任务中,‘传感器融合’等新技术旨在帮助减少操作员工作量并提高态势感知能力。本论文探讨了不同传感器和数据源的跟踪特性及其对融合战术图像的贡献。任何传感器融合算法的基本构建块都是与传感器平台上每个传感器相关的跟踪算法。为了支持这项研究,编写了 MATLAB 程序‘fusim’,为采购经理提供评估跟踪和传感器融合算法的工具。 fusim 程序为用户提供了选择以下传感器平台的灵活性:传感器平台、与该平台关联的最多四个传感器、目标类型、问题方向以及要与传感器一起使用的跟踪算法。fusim 程序用于比较多传感器/多目标环境中的跟踪算法。具体来说,概率数据关联滤波器、交互多模型滤波器、卡尔曼滤波器和恒定增益卡尔曼滤波器
本研究提出了一种基于进料前向(预览距离控制)和反馈(LQR,线性二次调节器)控制器的路径跟踪算法,以减少标题角误差和预定义路径和自主车辆之间的横向距离误差。路径跟踪的主要目标是生成控制命令以遵循预定义的路径。通过控制车辆的转向角而导致的轨迹误差和横向距离误差来求解馈线误差和横向距离误差。使用LQR来减少由环境和外部干扰引起的误差。通过使用CARLA模拟器模拟自动驾驶汽车的驾驶环境来验证所提出的算法。使用测试工具证明了安全性和舒适性。这项研究还表明,所提出的算法的跟踪性能超过了其他路径跟踪算法的跟踪性能,例如纯Pursuit和Stanley方法。
传感器融合中不同系统和数据源的跟踪和识别特性分析 Dean A. Wilson—美国海军中尉 弗吉尼亚理工大学航空工程学士,1990 年 航空工程硕士 –2001 年 6 月 导师:Russell Duren,航空工程系 联合导师:Gary Hutchins,电气工程系 在指挥和控制任务中,‘传感器融合’等新技术旨在帮助减少操作员工作量并提高态势感知能力。本论文探讨了不同传感器和数据源的跟踪特性及其对融合战术图像的贡献。任何传感器融合算法的基本构建块都是与传感器平台上每个传感器相关的跟踪算法。为了支持这项研究,编写了 MATLAB 程序‘fusim’,为采购经理提供评估跟踪和传感器融合算法的工具。 fusim 程序为用户提供了选择以下传感器平台的灵活性:传感器平台、与该平台关联的最多四个传感器、目标类型、问题方向以及要与传感器一起使用的跟踪算法。fusim 程序用于比较多传感器/多目标环境中的跟踪算法。具体来说,概率数据关联滤波器、交互多模型滤波器、卡尔曼滤波器和恒定增益卡尔曼滤波器
摘要 - 当前的最新自动驾驶车辆主要依靠每个传感器系统来执行感知任务。这样的框架的可靠性可能会受到阻塞或传感器故障的限制。为了解决这个问题,最新的研究建议使用车辆到车辆(V2V)通信与他人共享感知信息。但是,大多数相关的作品仅着眼于合作探测,并让合作社跟踪一个未充满刺激的研究领域。最近的一些数据集(例如V2V4Real)提供3D多对象合作跟踪基准。但是,他们提出的方法主要使用合作检测结果作为标准单传感器Kalman滤波器基于基于Kalman滤波器的跟踪算法的输入。在他们的方法中,可能无法正确估计来自不同连接的自动驾驶汽车(CAVS)的不同传感器的测量不确定性,以利用基于卡尔曼滤波器的基于卡尔曼滤波器的跟踪算法的理论优化属性。在本文中,我们提出了一种新颖的3D多对象合作跟踪算法,用于通过可区分的多传感器卡尔曼滤波器自动驾驶。我们的算法学会了每种检测的测量不确定性,以更好地利用基于卡尔曼滤波器基于卡尔曼滤波器的跟踪方法的理论属性。实验结果表明,与V2V4REAL中最新方法相比,我们的算法仅用0.037倍的通信成本提高了17%的跟踪精度。我们的代码和视频可在URL和URL上找到。
通用动力公司最新的声纳浮标处理软件(包括被动和主动能量图以及强大的跟踪算法)旨在增强战术意识,同时显著减少操作员的工作量。一项新功能是“CUDA”(计算机化水下探测助手),这是一款“APP”,旨在自动评估嘈杂沿海地区的战术情况,而无需操作员干预。
传统的电子信息工程数字信号处理技术存在数据冗余、数据利用率低等问题。针对这些问题,本文提出了一种基于分布式云计算的电子信息工程数字信号处理新技术。从常规数字信号的数据采集、数据分析、数据分类、数据挖掘、有效信息存储等环节出发,通过依靠分布式云计算方法和智能梯度跟踪算法实现数字信号的高效处理,采用比例积分微分(PID)控制策略来评价数字信号处理技术中各个环节的智能程度。该方法可实现数字信号处理过程中数据采集和存储的自适应调控,实现多样化分析和智能匹配。通过分布式云计算实现对系统存储模块的快速控制,使数据库提高工作效率,降低系统在数据运算过程中的功耗成本,提高数字信号处理的效率。实验结果表明,基于分布式云计算和智能梯度跟踪算法的数字信号处理系统具有计算效率高、精度高、稳定性好的优点。© 2021 Elsevier B.V. 保留所有权利。
– 3D 硅传感器:开发和特性(GF Dalla Betta,特伦托) – 3D 钻石传感器:开发和特性(S. Sciortino,佛罗伦萨) – 像素前端的设计和测试(V. Liberali,米兰) – 实时跟踪算法的设计和实施(N. Neri,米兰) – 高速读出板的设计和实施(A. Gabrielli,博洛尼亚) – 系统集成和测试(A. Cardini,卡利亚里)