美国联邦调查局 (FBI)、美国国家安全局 (NSA)、美国网络司令部和国际合作伙伴发布了此联合网络安全咨询 (CSA),警告俄罗斯国家支持的网络行为者使用受损的 Ubiquiti EdgeRouters (EdgeRouters) 在全球范围内开展恶意网络行动。美国联邦调查局、美国国家安全局、美国网络司令部和国际合作伙伴(包括比利时、巴西、法国、德国、拉脱维亚、立陶宛、挪威、波兰、韩国和英国的当局)评估了俄罗斯总参谋部情报总局 (GRU)、第 85 主特别服务中心 (GTsSS)(也称为 APT28、Fancy Bear 和 Forest Blizzard (Strontium))是否在全球范围内使用受损的 EdgeRouters 来获取凭据、收集 NTLMv2 摘要、代理网络流量以及托管鱼叉式网络钓鱼登陆页面和自定义工具。
摘要 使用 6TiSCH 标准的工业无线传感器网络 (IWSN) 为工业环境中的有线解决方案提供了一种可扩展且经济高效的替代方案,尤其是在难以到达的区域。主电源供电设备面临高昂的安装成本和电缆漏洞,而电池供电设备则受到使用寿命和维护挑战的限制。能量收集和超级电容器提供了有前途的替代方案,具有更长的使用寿命和更少的维护。但是,通常只考虑无电池终端设备。由于无电池设备的间歇性能源可用性和苛刻的网络要求,路由器被假定为持续供电。因此,据我们所知,本文提出了第一个将无电池路由器集成到 6TiSCH 网络中的解决方案,该解决方案基于以前使用实时流量预测模型的工作。我们通过开发能耗和存储预测机制来扩展这一点,实现基于节点可用能量的自适应调度。所提出的自适应算法动态修改了时隙信道跳变 (TSCH) 调度函数,以降低无电池路由器的能耗,同时触发拓扑变化以确保网络可靠性并根据动态能源可用性自适应地路由数据。在小型和大型拓扑中对该算法的评估表明,该算法通过动态调整时间表,可以有效地降低能耗并提高网络性能。这种方法虽然会带来延迟,但显著提高了无电池网络的可靠性和正常运行时间。总体而言,该解决方案推动了完全能源自主的 IWSN 的发展,适用于非关键楼宇自动化和类似应用。
获得 RADIUS 服务器凭证后,中华人民共和国政府支持的网络攻击者使用这些凭证和自定义自动脚本通过安全外壳 (SSH) 向路由器进行身份验证,执行路由器命令并保存输出 [T1119]。这些脚本以 Cisco 和 Juniper 路由器为目标,并保存执行命令的输出,包括每个路由器的当前配置。成功捕获命令输出后,这些配置被从网络泄露到攻击者的基础设施 [TA0010]。网络攻击者可能使用了其他脚本来进一步自动利用中型到大型受害网络(其中有大量路由器和交换机),以收集大量路由器配置,这些配置对于成功操纵网络内的流量是必需的。
其他AS应该注意到使用AS X到达其他AS的成本已经改变,甚至变得不可用。AS X很自然地会通知其邻居AS X中有更新发生。因此一个AS的变化可能会导致许多其他AS的变化。如果一个AS在很短的时间内发送过多的更新信息,整个网络可能会被这些更新信息淹没。此外,这些信息接受者,也就是路由器,的处理能力是有限的,路由器的存储能力有限,过多的更新信息可能会导致路由器丢包。这就是为什么路由器有一个MRAI计时器,它控制路由器发送更新信息的频率。这个计时器对所有路由器都有一个默认设置,即30秒,然而在不同情况下30秒可能太长或太短,这会延迟收敛。路由器是否可以根据网络的不同情况调整不同的MRAI?在AI的力量范围内,这是完全可能的。
被调查的僵尸网络的定制 Mirai 恶意软件是自动入侵各种设备的系统的组件。为了招募新的“机器人”,僵尸网络系统首先使用各种已知漏洞利用之一入侵互联网连接设备(请参阅附录 B:观察到的 CVE)。入侵后,受害设备从远程服务器执行基于 Mirai 的恶意软件负载。执行后,负载启动设备上的进程,使用端口 443 上的传输层安全性 (TLS) 与命令和控制 (C2) 服务器建立连接。这些进程从受感染的设备收集系统信息,包括但不限于操作系统版本和处理器、内存和带宽详细信息,以发送到 C2 服务器进行枚举。该恶意软件还会向“c.speedtest.net”发出请求,可能是为了收集其他互联网连接详细信息。一些恶意软件负载会自我删除以逃避检测。
被调查的僵尸网络的定制 Mirai 恶意软件是自动入侵各种设备的系统的组件。为了招募新的“机器人”,僵尸网络系统首先使用各种已知漏洞利用之一入侵互联网连接设备(请参阅附录 B:观察到的 CVE)。入侵后,受害设备从远程服务器执行基于 Mirai 的恶意软件负载。执行后,负载启动设备上的进程,使用端口 443 上的传输层安全性 (TLS) 与命令和控制 (C2) 服务器建立连接。这些进程从受感染的设备收集系统信息,包括但不限于操作系统版本和处理器、内存和带宽详细信息,以发送到 C2 服务器进行枚举。该恶意软件还会向“c.speedtest.net”发出请求,可能是为了收集其他互联网连接详细信息。一些恶意软件负载会自我删除以逃避检测。
使用 SNMP 协议访问路由器 2021 年,APT28 使用基础设施伪装简单网络管理协议 (SNMP) 访问全球的思科路由器。其中包括少数位于欧洲的路由器、美国政府机构和大约 250 名乌克兰受害者。SNMP 旨在允许网络管理员远程监控和配置网络设备,但它也可能被滥用来获取敏感的网络信息,如果存在漏洞,还可以利用设备渗透网络。许多软件工具可以使用 SNMP 扫描整个网络,这意味着不良配置(例如使用默认或易于猜测的社区字符串)可能会使网络容易受到攻击。弱的 SNMP 社区字符串(包括默认的“public”)允许 APT28 获取路由器信息的访问权限。APT28 发送了额外的 SNMP 命令来枚举路由器接口。[T1078.001] 被入侵的路由器配置为接受 SNMP v2 请求。 SNMP v2 不支持加密,因此所有数据(包括社区字符串)都是以未加密形式发送的。利用 CVE-2017-6742 APT28 利用了漏洞 CVE-2017-6742(Cisco Bug ID:CSCve54313)[T1190]。思科于 2017 年 6 月 29 日首次公布了此漏洞,并发布了修补软件。思科发布的公告提供了解决方法,例如仅限制受信任主机对 SNMP 的访问,或禁用多个 SNMP 管理信息库 (MIB)。恶意软件部署
摘要 — 可再生能源 (RES) 在次级输电系统中的广泛使用导致了严重的电能质量问题,例如电压超标,从而导致可再生能源的大幅削减。这是由于可再生能源固有的可变性和次级输电系统的高 R/X 比。为了充分利用可再生能源,通常使用电池储能系统 (BESS) 来减轻 RES 大幅波动的负面影响。功率流路由器 (PFR) 可以被视为一种通用类型的网络侧控制器,也已被证实可以增强电网容纳可再生能源的灵活性。在本文中,我们研究了 PFR 在帮助 BESS 容纳可再生能源方面的价值。使用有无 PFR 的情况下实现零可再生能源削减所需的最小 BESS 容量来评估 PFR 的性能。在多周期优化模型中考虑了 BESS 的运行约束和 PFR 的端电压特性。通过在改进的 IEEE 30 总线子传输系统上进行数值模拟,对所提出的模型进行了测试,结果表明,通过在单条线路上安装 PFR,可以减少 15% 的 BESS 容量。索引术语 — 功率流路由器、电池储能系统、可再生能源容纳、子传输系统
