本文介绍了在Starling地层飞行光学实验(StarFox)期间进行的一群小型航天器群的初始飞行结果。Starfox是NASA Starling Mission上的四个实验之一,该实验由2023年7月推出的四个立方体组成。仅一角方法应用板载摄像机获得的卫星间轴承角度进行导航,增加卫星自主权并实现新的任务概念。尽管如此,先前的飞行演示仅介绍了一个观察者和目标,并依靠Apriori目标轨道知识来初始化,转化操作以解决目标范围以及外部绝对轨道更新以维持收敛。StarFox通过应用仅角度的绝对和相对轨迹测量系统(ARTM)来克服这些局限性,该系统整合了三种新型算法。图像处理使用多种假设方法和域特异性运动学建模来启用并跟踪图像中的多个目标,并计算目标轴承角。批处理轨道确定通过迭代批次最小二乘和弱可观察到的目标范围的采样来计算从轴承角批次的初始群轨道估计。顺序轨道确定利用具有非线性模型的自适应,有效的无气体滤波器,以随着时间的推移来完善群体估计。通过横跨链路共享的多观察者测量值无缝融合以实现可靠的绝对和相对轨道测定。Starfox Flight数据和遥测者提供了卫星群的仅自动角度导航的首次演示,包括多目标和多观察者相对导航;未知目标导航的自主初始化;并同时确定绝对和相对轨道。在有挑战性的测量条件下,单个观察者达到了目标范围的0.5%的相对定位误差,而多个观察者则降低至0.1%。结果表明,关于正在进行的Starfox活动以及仅在未来分布式任务中的纯粹导航的应用方面表现出色。
Doris首先携带于Spot-2卫星上,该卫星在1990年2月3日记录了Doris的第一个测量。Since then, the system has operated continuously on 18 satellites, including the space imaging satellites SPOT-2/3/4/5, Pleiades1A-1B, altimetry missions for ocean observations such as TOPEX-Poseidon, ENVISAT, Jason-1/2/3, HY-2A, Saral/AltiKa, Sentinel3-A/B, and also for hydrological monitoring and ice measurements with Envisat, Cryosat-2,Saral/Altika和Sentinel3-A/b。在最新任务(例如Sentinel-3A/3B)上,多丽丝系统可以达到8-10 mm RMS(根平方)的径向轨道精度。DORIS数据均用于卫星上的实时轨道确定,并且开发了精确的轨道,其潜伏期为两天到几周,用于与这些不同任务提供的高度计数据一起使用。
请参阅提供任务计划和飞行动态分析和基于软件的操作工具,包括哥白尼,一般任务分析工具(GMAT),ANSYS的系统工具套件(STK)和轨道确定工具套件(ODTK)。另请参见提供商业,端到端的飞行动态操作解决方案,以实现成本效益的空间任务。围绕STK和ODTK构建,请参阅“飞行动力学工具(FDT)”和其他内部软件解决方案,从而可以通过飞行操作从初始概念到实现全面任务分析。See的团队在Cislunar Space拥有深厚的发展和操作经验。尤其是,请参见开发轨迹的可靠记录,以利用新兴的商业选择来访问空间。参见Rocket Lab的Lunar Photon上阶段的上升轨迹,该阶段部署了顶峰航天器。
在欧盟 SST 背景下与美国太空商务办公室联合进行实验,收集和交换卫星观测数据。该实验涵盖了 12 颗所有轨道类型的样本卫星的 60 天收集期。交换观测数据和支持信息,并使用每个实体固有的 OD 能力构建轨道,然后进行比较。每个实体完成了三种 OD 方法组合:仅美国数据、仅 EUSST 数据和两个数据集的组合。使用精确星历表作为参考的轨道精度分析表明,在组合数据、解决数据缺口、覆盖范围、网络可用性问题和减少更新间隔时,轨道确定和传播的精度和稳健性得到了提高。有关实验的更多详细信息,请参阅 [6]。
大气发声大气发声是基于通过大气的全球导航卫星系统(GNSS)的信号。GNSS包括美国GPS,俄罗斯的Glonass和欧洲的伽利略。GPS星座由28个活跃的卫星组成,它们以20 000公里的高度绕地球绕,以1575 MHz和1228 MHz发射导航信号。在地平线上的传输卫星的掩盖过程中,信号路径的很大一部分横穿大气。与真空中的光速相比,这略微降低了无线电波的速度,显然增加了GPS卫星与接收器之间的测量距离(LEO)卫星。在信号最接近地球的点上,效果最大。由于两个卫星的相对运动,该点的高度将减小(在设置掩盖的情况下)或增加(在掩埋的情况下)。虽然当数据用于精确定位或轨道确定时,这种大气效应是错误的源
F. Kikuchi,Q。Liu,H。Hanada,N。Kawano,K。Matsumoto,T。Iwata,S。Gossens,K。Asari,Y。Ishihara,S。Tsuruta,S。 S. Sasaki,使用多个场景和Samousid的两个子卫星(Kugiya)的Picsecond精确度VLBI,无线电科学,44,1-7,2009。 Q. Liu,F。Kikuchi,K。Matsumoto,S。Gossens,H。Hanada,Y。Harada,X。Shi,Q. Huang,T。Ishikawa,S。Tsuruta,K。K. Asari Namiki,S。Sasaki,S。Ellingsen,K。Sato,K。Shibata,Y。Tamura,T。Jike,K。Iwadate,O。Kameya,J。Ping,B。 H. Hanada,T。Iwata,Q. Liu,F。Kikuchi,K。Matsumoto,S。Gossens,Y。Arada,K。Assari,T。Ishikawa,Y。Ishikawa,Ishikawa, N. Namki,Y。Kono,K。Iwadate,O。Kameya,K。M。Shibata,Y。Tamura,S。Kamate,Y。Yahagi,W。Masui,W。Masui,K。Tanaka,Mijima,Mijima,X. Schlüter,《 Selene(Kaguya)的月球轨道的差异概述》(Kaguya),以确定精确的轨道确定和月球革命性和月球Graydy,太空科学评论,154,123-144,, S. Gossens,K。Matsumoto,Q. Liu,F。Kikuchi,K。Sato,H。Hanada,Y。Hanada,h。使用Selene相同梁差异VLBI跟踪数据的重力场测定,Geodesy杂志,85,205-228,2011。F. Kikuchi,Q。Liu,H。Hanada,N。Kawano,K。Matsumoto,T。Iwata,S。Gossens,K。Asari,Y。Ishihara,S。Tsuruta,S。 S. Sasaki,使用多个场景和Samousid的两个子卫星(Kugiya)的Picsecond精确度VLBI,无线电科学,44,1-7,2009。Q. Liu,F。Kikuchi,K。Matsumoto,S。Gossens,H。Hanada,Y。Harada,X。Shi,Q. Huang,T。Ishikawa,S。Tsuruta,K。K. Asari Namiki,S。Sasaki,S。Ellingsen,K。Sato,K。Shibata,Y。Tamura,T。Jike,K。Iwadate,O。Kameya,J。Ping,B。 H. Hanada,T。Iwata,Q. Liu,F。Kikuchi,K。Matsumoto,S。Gossens,Y。Arada,K。Assari,T。Ishikawa,Y。Ishikawa,Ishikawa, N. Namki,Y。Kono,K。Iwadate,O。Kameya,K。M。Shibata,Y。Tamura,S。Kamate,Y。Yahagi,W。Masui,W。Masui,K。Tanaka,Mijima,Mijima,X. Schlüter,《 Selene(Kaguya)的月球轨道的差异概述》(Kaguya),以确定精确的轨道确定和月球革命性和月球Graydy,太空科学评论,154,123-144,, S. Gossens,K。Matsumoto,Q. Liu,F。Kikuchi,K。Sato,H。Hanada,Y。Hanada,h。使用Selene相同梁差异VLBI跟踪数据的重力场测定,Geodesy杂志,85,205-228,2011。Q. Liu,F。Kikuchi,K。Matsumoto,S。Gossens,H。Hanada,Y。Harada,X。Shi,Q. Huang,T。Ishikawa,S。Tsuruta,K。K. Asari Namiki,S。Sasaki,S。Ellingsen,K。Sato,K。Shibata,Y。Tamura,T。Jike,K。Iwadate,O。Kameya,J。Ping,B。H. Hanada,T。Iwata,Q. Liu,F。Kikuchi,K。Matsumoto,S。Gossens,Y。Arada,K。Assari,T。Ishikawa,Y。Ishikawa,Ishikawa, N. Namki,Y。Kono,K。Iwadate,O。Kameya,K。M。Shibata,Y。Tamura,S。Kamate,Y。Yahagi,W。Masui,W。Masui,K。Tanaka,Mijima,Mijima,X. Schlüter,《 Selene(Kaguya)的月球轨道的差异概述》(Kaguya),以确定精确的轨道确定和月球革命性和月球Graydy,太空科学评论,154,123-144,, S. Gossens,K。Matsumoto,Q. Liu,F。Kikuchi,K。Sato,H。Hanada,Y。Hanada,h。使用Selene相同梁差异VLBI跟踪数据的重力场测定,Geodesy杂志,85,205-228,2011。H. Hanada,T。Iwata,Q. Liu,F。Kikuchi,K。Matsumoto,S。Gossens,Y。Arada,K。Assari,T。Ishikawa,Y。Ishikawa,Ishikawa, N. Namki,Y。Kono,K。Iwadate,O。Kameya,K。M。Shibata,Y。Tamura,S。Kamate,Y。Yahagi,W。Masui,W。Masui,K。Tanaka,Mijima,Mijima,X. Schlüter,《 Selene(Kaguya)的月球轨道的差异概述》(Kaguya),以确定精确的轨道确定和月球革命性和月球Graydy,太空科学评论,154,123-144,, S. Gossens,K。Matsumoto,Q. Liu,F。Kikuchi,K。Sato,H。Hanada,Y。Hanada,h。使用Selene相同梁差异VLBI跟踪数据的重力场测定,Geodesy杂志,85,205-228,2011。H. Hanada,T。Iwata,Q. Liu,F。Kikuchi,K。Matsumoto,S。Gossens,Y。Arada,K。Assari,T。Ishikawa,Y。Ishikawa,Ishikawa, N. Namki,Y。Kono,K。Iwadate,O。Kameya,K。M。Shibata,Y。Tamura,S。Kamate,Y。Yahagi,W。Masui,W。Masui,K。Tanaka,Mijima,Mijima,X. Schlüter,《 Selene(Kaguya)的月球轨道的差异概述》(Kaguya),以确定精确的轨道确定和月球革命性和月球Graydy,太空科学评论,154,123-144,, S. Gossens,K。Matsumoto,Q. Liu,F。Kikuchi,K。Sato,H。Hanada,Y。Hanada,h。使用Selene相同梁差异VLBI跟踪数据的重力场测定,Geodesy杂志,85,205-228,2011。H. Hanada,T。Iwata,Q. Liu,F。Kikuchi,K。Matsumoto,S。Gossens,Y。Arada,K。Assari,T。Ishikawa,Y。Ishikawa,Ishikawa, N. Namki,Y。Kono,K。Iwadate,O。Kameya,K。M。Shibata,Y。Tamura,S。Kamate,Y。Yahagi,W。Masui,W。Masui,K。Tanaka,Mijima,Mijima,X. Schlüter,《 Selene(Kaguya)的月球轨道的差异概述》(Kaguya),以确定精确的轨道确定和月球革命性和月球Graydy,太空科学评论,154,123-144,,S. Gossens,K。Matsumoto,Q. Liu,F。Kikuchi,K。Sato,H。Hanada,Y。Hanada,h。使用Selene相同梁差异VLBI跟踪数据的重力场测定,Geodesy杂志,85,205-228,2011。S. Gossens,K。Matsumoto,Q. Liu,F。Kikuchi,K。Sato,H。Hanada,Y。Hanada,h。使用Selene相同梁差异VLBI跟踪数据的重力场测定,Geodesy杂志,85,205-228,2011。J. Yan,S。Goossens,K。Matsumoto,J。Ping,Y。arada,T。Iwata,N。Namiki,N。Namiki,F。Li,G。Tang,G。Cao,J。Cao,H。Hanada和N. Kawano,N。Kawano,N。Kawano,CEGM02:使用Rang'e-1 Orbital Tracking Data,Plane and Plane and Plane and Plane and Plane and Plane and PlaneTary Data,Plane,科学,62,1-9,
提供完整的卫星和轨道碎片普查始于高效探测这些物体并可靠地确定其轨道(空间域感知或 SDA)。荷兰皇家空军 (RNLAF) 表示需要开发一种能够为 SDA 做出贡献的系统。广域、高节奏的天文勘测监测了大部分天空,为轨道确定提供了一个有前途的平台。例如,智利的 MASCARA 仪器使用五台固定的广角摄像机以 6 秒的节奏连续监测当地夜空。在这些图像中,卫星由于其长条纹状外观而易于与其他物体区分开来。但是,为了最大限度地发挥这些丰富数据的实用性,应几乎即时提取有关卫星的信息。我们开发了一种新颖的管道,可以几乎即时自动检测卫星条纹并从天文数据中提取位置信息。我们在本文中解决的主要挑战如下:处理速度(即跟上传入的数据流)和卫星天空位置自动提取的准确性。
使用这两种类型的传感器可利用雷达测量来提供物体的精确径向速度和距离,而望远镜可提供更好的天空坐标测量。通过安装雷达和光学传感器,PASO 可以延长对空间碎片的观察时间,并实时关联光学和雷达来源的信息。在黄昏时期,两种传感器可同时使用,快速计算 LEO 物体的新 TLE,从而消除大型 SST 网络中站点之间数据交换所涉及的时间延迟。这一概念不会取代对全球多个位置的传感器的 SST 网络的需求,但将提供一组更完整的给定物体通道测量值,从而增加初始轨道确定或给定位置再入活动监测的附加值。PASO 将有助于开发新的解决方案,以更好地表征物体,提高整体 SST 能力,并为开发和测试用于空间碎片监测的新雷达和光学数据融合算法和技术提供完美的场地。
● 太空飞行的动力系统理论 ● 太空飞行的机器学习和人工智能 ● 地球轨道和行星任务研究 ● 轨迹机动设计和优化 ● 行星际任务设计 ● 小行星和小天体任务 ● 轨道动力学和碎片 ● 轨道确定和估计 ● 空间态势感知(与 GNC 联合轨道) ● 地月天体动力学、任务和操作 ● 姿态动力学、确定和控制 ● 卫星星座、编队和相对运动 ● 卫星会合和近距离操作 ● 空间组装、制造和空间机器人 ● 特别会议:空间机动和物流 将根据扩展摘要的质量、工作和/或想法的原创性以及对拟议主题的预期兴趣来接受手稿。基于实验结果或当前数据或报告正在进行的任务的提交也会引起人们的兴趣。鼓励来自工业界、政府和学术界的贡献。我们还鼓励提交包含多学科研究和国际合作的论文。会议前必须提交完整的手稿。英语是会议的工作语言。更多最新信息可在会议网站 https://www.aiaa.org/scitech/ 上找到。该网站还链接到摘要和手稿提交流程,可通过演示文稿和论文链接访问。
准确的初始轨道确定(IOD)对于太空域意识(SDA)至关重要。这项研究引入了一种iod方法,旨在增强用电光(EO)传感器的短距离角度调查的未知空间对象的初始检测的轨道预测准确性。方法论将机器学习模型与轨道力学原理集成在一起。该模型在各种轨道方案的模拟观测数据集上进行了训练,包括低地球轨道(LEO),中地球轨道(MEO),地理轨道(GEO)和高度椭圆形轨道(HEO)。比较分析表明,所提出的方法的表现优于传统的纯粹角度方法,例如拉普拉斯,高斯和好东西方法,相对于观察者,角度误差的中位数降低。这种改进提高了后续跟踪工作的可靠性。网络体系结构具有两个长的短期内存(LSTM)层,然后是完全连接的(密集)层,在使用基于物理学的损耗函数预测位置和速度状态向量时,可以实现最佳结果。这些发现强调了机器学习在提高SDA功能方面的潜力。