在这项工作中,我们分享了我们对未来的愿景:可重复使用的轨道服务飞行器(OSV)将改变太空经济并发展新兴的在轨服务行业。可重复使用的 OSV 充当卫星的“中转航班”,提供多个在轨目的地,类似于航空业。开发可靠的可重复使用的 OSV 将扩大单颗卫星的效用,允许更换平面、逃逸轨迹、多轨道任务等。OSV 进一步实现有效载荷升级、卫星星座维护、使用寿命结束时脱轨以及轨道碎片清除。这些附加功能将可重复使用的 OSV 与单轨道任务替代方案区分开来,并增加了在轨经济机会。一旦在低地球轨道建立了 OSV 网络,就可以有效地安排会合和转移,以最大限度地减少连接之间的在轨等待时间。
摘要 — 自 2018 年 10 月 29 日发射以来,Diwata-2 已在轨运行三年。因此,其轨道配置的影响比早期阶段更加明显。本文研究了轨道漂移对影响卫星运行的当前问题(如卫星通信和图像质量)的影响。通过五次模拟,包括确定可接受的通行极限、菲律宾上空的顶点事件、通行时间的变化以及卫星时间分辨率的变化,发现卫星通行时间与发射时的设计时间相差了一个多小时。其节点进动率增加,导致通行时间推迟。卫星的时间分辨率也从 31 天变为 11 天,但代价是覆盖面积减少。使用历史双线元素 (TLE) 数据,还模拟了未来的通行。结果发现,目前存在天底指向盲区问题,覆盖了菲律宾整个面积的 58%。还进行了两项预测,以确定卫星何时在当地时间下午 3 点通过。第一种是使用卫星中天事件的线性回归,第二种是使用卫星的历史 TLE。两种预测都一致认为该事件将在 2023 年 8 月发生。因此,在此限制之后,大部分通过都不适合获取图像。
引用:Jia-Richards, Oliver 和 Lozano, Paulo C. 2021。“带空间推进系统分级的圆形轨道转移分析指导。”Acta Astronautica,179。
5.修改了整流天线结构,以降低建造成本;6.修改了太空操作方法,使用电动轨道转移飞行器并在地球同步轨道上建造,符合 DOE/NASA 的规定
操作:任务从使用猎鹰 9 号从地球成功发射开始。进入地球轨道后,航天器执行一系列轨道调整,以达到前往火星所需的速度。发射后,航天器执行精确的轨道转移,以与前往火星的轨道对齐。此操作包括计算燃烧,以使航天器走上正确的路径,确保高效准确地到达红色星球。轨道转移后,航天器进入巡航阶段,在此期间它将穿越广阔的空间前往火星。在此期间,航天器可以进行系统检查、仪器校准和任何必要的航向修正,以微调轨道。当航天器接近火星时,它会执行进入轨道的关键操作。精心定时的燃烧使航天器能够减速并被火星引力场捕获。这标志着从行星际空间过渡到火星轨道。椭圆轨道的设计旨在优化观测和通信能力,使航天器能够在任务期间改变与火星的距离。一旦进入所需的椭圆轨道,航天器便开始其通信和观测任务目标,并开始收集数据。建立通信系统以促进数据传回地球。在整个任务期间,航天器继续在椭圆轨道内运行,并根据需要定期调整以保持最佳状态。这种适应性确保任务能够应对运行期间的动态因素和意外发现。
此次融资得益于 D-Orbit 令人印象深刻且无与伦比的 16 次成功任务记录;自 2020 年以来,该公司专有的轨道转移飞行器 ION 卫星运载器已在轨道上发射 14 颗,并计划在 2025 年再发射 7 颗。这些任务使该公司能够在轨道上测试 D-Orbit 的专有技术和开创性的第三方创新。这些测试包括用于跟踪和绘制亚厘米碎片的大小、速度和路径以帮助保护卫星免受碰撞的传感器,以及用于及时检测洪水并将洪水地图传递给应急响应人员的 AI/ML 应用程序,从而加快对环境危机的响应时间,有可能挽救生命并最大限度地减少对社区的损害。
NEA ® 有效载荷释放环 (PRR) 利用 NEA ® 压紧释放机制产品线经过飞行验证的技术,从运载火箭或轨道转移飞行器 (OTV) 释放有效载荷/航天器。NEA ® 有效载荷释放环直径有 8 英寸、15 英寸和 24 英寸三种,由四 (4) 个 NEA ® 释放机制、两个半环和分离弹簧以及相应的支架组成。4 个 NEA 用于压缩分离弹簧并将两个半环固定在一起。然后将 PRR 连接到有效载荷。PRR 和所连接的有效载荷安装到运载火箭或 OTV 上,并通过冗余连接器电连接到运载火箭。提供额外的连接器以提供运载火箭和有效载荷之间的通信。当运载火箭或 OTV 向 PRR 连接器施加电流时,有效载荷被释放。连接器将电流分配至四个 NEA ® 释放机构,这些机构启动并允许分离弹簧将有效载荷与运载火箭或 OTV 分离。
美国太空军 (USSF) 和 NASA 正在寻求能够增强太空能力的变革性技术。这些技术必须能够实现按需服务,例如轨道转移、机动、能力增强、寿命延长、加油、维修、碎片清除、制造和组装。这些服务可以通过在轨道上而不是在地面上按需组装和制造航天器来实现。确定合作推进使能技术的途径对于确保实现这些目标至关重要。本文介绍了一项多学科努力,旨在构建技术路线图,该路线图将在 10 年内建成一个轨道小型卫星工厂。工厂概念是围绕关键使能技术构建的,例如混合增材制造,它采用熔融长丝制造、激光焊接和线嵌入。还评估了插入工厂的相对技术和制造准备情况。还确定了在未来 3 到 4 年内推进这些技术的合作开发途径。虽然该工厂专注于小型卫星制造,但这项基础工作可以扩大规模,以制造更大的航天器系统。
小型卫星 (SmallSat) 技术的最新发展为太空任务的新范式打开了大门。NASA 最近的一份技术论文详细介绍了当前小型航天器技术的最新进展 [1]。小型卫星是传统卫星的较小尺寸。小型卫星对太空任务设计人员来说具有吸引力,因为它们可以使用商用现货组件,并且可以作为次要有效载荷共享,从而降低成本。次要有效载荷适配器对小型卫星的质量和体积有严格的要求,它们必须在发射前收起,并从适配器上释放后展开,例如 EELV 次要有效载荷适配器 (ESPA) [2]。目前,ESPA 平台有许多变体,其中一些配置为用作轨道转移飞行器。图 1 展示了标准 ESPA 变体。截至 2018 年,NASA 科学任务理事会 (SMD) 采取了一项积极的政策,将 ESPA 环集成到具有额外上升性能的 SMD 任务中,以便为次要有效载荷提供共享机会 [3]。