孩子们喜欢太空探索,但他们不一定知道火箭和航天器实际上是如何工作的。孩子们可以根据物理学使用以太空为主题的游戏,以了解有关金属圆柱体如何充满推进剂移动和在太空中相互作用的方式,同时仍然很开心。我们谈论我们的示例视频,重点关注儿童太空迷,以帮助他们开始。我们使用当前在稳定版本中可用的游戏,首先从基本概念2D游戏(例如Simpleerockets)开始,然后再使用Space -Flight Simulator(也是2D)。从那里,我们在Simpleerockets 2中提供了发展到3D运动的示例,现在称为Juno:New Origins,Kerbal Space Program和Kerbal Space Program的新版本2。我们将介绍如何教孩子Delta-V和特定冲动等概念。我们的目标是帮助孩子和老师从诸如亚轨道轨迹等简单概念和轨道上发展,再到火箭舞台,轨道转移,会合,登陆,降落以及最终的更先进的概念,最终,在跨层次的trips上获得的资源保护和效率。
摘要太阳帆技术已被提出和开发用于太空探索,具有低启动成本,无促性剂消耗和连续推力的优势,在地球极地检测,星际探索等方面具有巨大的潜力。在过去几十年中,太阳帆的发展在结构设计,制造,材料,轨道转移和可行性控制方面取得了重大进展,这对天文学,物理学和航空科学做出了有意义的贡献。在当前的太阳帆任务中,已经实现了太阳辐射压力(SRP)推进和星际转移的技术突破。但是,仍然存在许多挑战,需要解决问题。本文试图从关键技术的角度总结太阳能帆船在太空任务中的研究方案和潜在应用,以便为该领域的研究人员提供整体观点。提供了太阳帆系统设计的关键技术的分析。最后,讨论了太阳帆船的挑战和前瞻性发展。2023代表中国航空和宇航学会的Elsevier Ltd.的生产和主持。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
太空电梯的建设将是巨大成本和风险的行星工程的鼓舞人心的壮举。但是,好处会超过成本和风险吗?确切地说,建立这种结构的目的是什么?例如,如果太空电梯可以每天提供无推进剂(免费释放)轨道转移到太阳系及其他行星的轨道转移该怎么办?我们认为,这种好处可能会超过成本和风险。但是太空电梯可以提供这样的服务吗?在本手稿中,我们检查了3层太空电梯启动系统设计,并对使用此类设计的航天器的轨道力学提供了详细的数学分析。我们发现所有设计中的限制因素是过渡到黄道平面的问题。对于第1级和第2层,我们发现可以将自由释放转移到所有外行星都是可能的,从而达到了远远超出了当前基于地球的火箭技术的能力,但由于行星对齐而导致的覆盖率显着。对于第3层电梯,我们发现每天都有可能快速的免费释放转移到太阳系中的所有行星。最后,我们表明,第2层和3个空间电梯可以潜在地使用配重执行上演的弹弓手术,从而提供了速度乘数,该速度乘数可以大大减少到外行星和星际目的地的运输时间。
摘要 - Propulsion Systems允许卫星在太空中执行许多功能,例如轨道站保持,重新进入控制,态度控制,轨道转移,会合操作,甚至更令人兴奋的跨现层旅行。的确,卫星中的推进系统已经建立了一个新的有利的太空探索和应用时代,因此需要开发详细的操作推进系统的流程,以便成功完成了携带此宝贵系统的太空任务。这项研究的目的是描述由Gomspace开发的冷燃气推进系统Nanoprop 3U的最相关的操作程序,该机载板上的3U Cubesat Mist MIST由KTH开发。程序,例如功率水平,遥测注意事项,推进剂质量确定,故障检测隔离和恢复分析以及退役计划,可以根据确定的雾任务的任务要求正确操作纳米螺旋罗。此外,本研究介绍了要使用Nanoprop执行的详细任务实验,目的是评估推进系统本身提供的性能以及其他根据推进系统产生的效果监测和控制航天器所需的板载子系统。在任务设计期间,应在地下概述推进系统的计划和操作,因此,对系统的特征和局限性有清晰的了解,强调了开发安全稳固的空间任务。
根据管理协议,NASA 的责任摘要:N/A 1.1 即将完成的任务里程碑时间表: ˆ 航天器发货:2023 年第一季度 ˆ 首次发射:2023 年第二季度 1.2 任务概述:Starfish Otter Pup 任务是一艘演示太空拖船,旨在测试低地球轨道 (LEO) 中的会合、近距操作和对接 (RPOD) 技术。Otter Pup 将与客户航天器(名为 Orbiter 的 Launcher Inc. 轨道转移飞行器 (OTV))分离、接近和对接。主要有效载荷由 Starfish Space 制造,包括 Nautilus 捕获机制、CETACEAN 相对导航软件和 CEPHALOPOD 制导和控制软件。其他有效载荷(Exotrail SA 提供的电力推进推进器和 Redwire 提供的用于相对导航的 Argus 相机)集成到基于 Astro Digital Micro+ 设计的航天器总线中。这种标准化卫星平台使用反作用轮、磁矩线圈、星跟踪器、磁力计、太阳传感器和陀螺仪,无需使用推进剂即可实现精确的 3 轴指向。1.3 运载火箭和发射场:托管在 Launcher Orbiter OTV 上,由 SpaceX Falcon 9 拼车任务发射,发射场为卡纳维拉尔角太空发射中心。1.4 拟议的初始发射日期:2023 年第二季度,SpaceX Transporter-8
自2023年4月15日,意大利Fino Mornasco以来,太空物流和轨道运输公司D-Orbit推出了Guardian,这是其专有轨道转移车辆(OTV)ION ION SATELLITE CARRIER(ION)的第10个商业任务。OTV于2023年4月14日下午23:48解开。 PDT(2023年4月15日,UTC 06:48)在加利福尼亚州Vandenberg太空力量基地的Space Punage Complect 4 East(SLC-4E)的Falcon 9火箭上,并于4月15日凌晨1:05在4月15日至500公里高度北极北高度的PDT上成功部署。ion是一种多功能且具有成本效益的OTV,旨在精确部署卫星并进行轨道演示第三方有效载荷的轨道演示。在2020年9月的第一个商业任务之后,D-Orbit完成了9个任务。“每个新任务都带来了新的挑战,要实现的新里程碑,作为公司成长的新机会以及团队。”“今年年初非常激烈,我们已经启动了几个新任务,封闭了重要的机构合同,我们努力地推动了团队,我对他们的热情和奉献精神允许我们实现的目标感到自豪和感激。”在任务期间与尊贵的客户合作,Ion SCV010被称为“ MATTHAEUS”,将在船上托管五颗卫星,其中一颗尚未公开,两个第三方有效载荷:
本研究研究了评估太空威胁的方法。太空服务对平民和军事能力都至关重要,而这种系统的丧失可能会带来严重的后果。空间系统暴露于各种威胁。为了确保基于空间的应用程序的好处,保护太空资产,提高安全性并维护太空环境,评估太空威胁至关重要。本论文的重点是能够执行精确演习的卫星引起的共眶拮抗威胁。这些卫星可以进行物理攻击或进行操作,例如对其他卫星的检查,窃听或中断。兰伯特的问题可用于计算轨道转移。通过在执行传输时间的一个值和传输时间的值范围内迭代解决问题,可以检测到何时可行。这可以用来评估卫星何时会对目标构成威胁。通过遗传算法的实施来改善轨道转移的计算。算法可以使用多种冲动来求解两个直接传输和转移。此外,还分析了一种可以处理多个目标函数的遗传算法,称为NSGA-II。实施的方法表明了被用于评估威胁的潜力,特别是对于执行单个冲动以转移到目标的直接转移。在这种情况下,可以根据卫星的∆ V预算确定威胁。但是,当引入其他冲动时,它会变得更加复杂。何时更有可能开始攻击时更难估计。实施的方法显示出潜力,但是需要进一步的研究才能开发出一种可靠的方法来评估康 - 轨道威胁。
意大利菲诺莫尔纳斯科,2024 年 1 月 11 日:全球领先的尖端太空物流服务提供商 D-Orbit 宣布成功完成其 C 轮融资的首轮,筹集了约 1 亿欧元。此轮融资是欧洲太空技术公司有史以来规模最大的融资之一,在此之前,D-Orbit 在 2023 年取得了辉煌的成绩,自 2021 年以来实现了三位数的年收入增长,赢得了超过 6000 万欧元的欧洲政府/航天机构合同,并成功完成了其 ION 轨道转移飞行器的另外七次任务。总部位于意大利的 D-Orbit 的愿景是创建太空物流基础设施,通过实现太空中货物、信息和人员的可持续运输,为未来 1 万亿美元的在轨经济提供动力。此次融资是在该公司令人瞩目的增长之后进行的,其无与伦比的记录包括总共 15 次成功任务和 13 次 ION 在轨飞行。这一记录巩固了 D-Orbit 作为全球领先太空运输参与者的地位。通过这些任务(其中大部分包括在轨道上测试新技术),该公司还致力于帮助太空生态系统更快、更强大地发展。现在,通过开发太空云计算和在轨服务能力,D-Orbit 正在进一步加强与机构和政府的合作,同时扩大其跨地域和跨行业的客户覆盖范围。
新的太空经济领域正在兴起。新兴的太空产业包括载人航天、卫星服务、轨道转移飞行器、商业空间站、太空制造、商业着陆器等。太空经济包括地月经济和月球和火星经济。太空工厂 (www.factoriesinspace.com) 是新兴太空经济、太空资源和微重力制造领域最大的商业实体在线数据库。该目录于 2018 年开始,目前已拥有 400 个条目,增长迅速。本文的第一部分将定义什么是新的太空经济,并为公司建立分类。将进行文献综述并创建词汇表,以在单一来源中定义相对较新的术语。在定义和接受新的行业类别之前,活动将以不同的方式命名,这使得确定竞争对手和估计市场规模变得具有挑战性。出于实际目的,高级类别的数量限制为 10 个。本文的第二部分将介绍哪些公司正在或计划在新的太空经济领域活跃的统计概况。虽然大多数商业着陆器、空间资源、栖息地和空间公用事业(能源、氧气、水、通信)企业都专注于低地球轨道和月球,但一旦出现发射机会和市场,其中许多企业可能会将火星和深空添加到他们的活动中。在分类中,将对能力、发展状况、地理分布和可用资金进行比较。目标是从 2021 年开始留下一个快照,以便能够开始发现未来十年的趋势和下一个太空市场繁荣。关键词:太空经济、天基经济、地外空间经济、在轨经济、地月经济、太空制造
摘要 — 快速可靠的优化轨道转移计算方法对于初始阶段的项目至关重要。它们可以对推进子系统(卫星设计的主要组件之一)进行初步的、现实的规模估算。这篇论文由 ReOrbit Oy 完成,提出了一种最短时间的最优轨道,用于将微型卫星从 GTO 轨道提升到 GEO,假设通过电力推进连续发射。根据此模拟得出的 ∆ v 要求,选择合适的电力推进系统,并详细说明其配置在燃料和推力要求方面的设计。这是通过考虑轨道提升带来的主要贡献,以及 10 年寿命期间每天进行两次的轨道机动所产生的附加物,如位置保持修正和反作用轮去饱和。优化方法是低推力轨道机动的直接-间接混合方法,采用庞特里亚金最小原理将其转录为非线性规划问题。利用 Lyapunov 控制理论获得启动优化器所需的初始猜测。实施轨道平均技术,能够在优化过程中快速计算多条轨迹。动态模型包括 J 2 纬向谐波、太阳辐射压力、太阳和月亮的第三体效应以及高达 1500 公里的大气阻力等干扰。利用圆柱形阴影模型评估日食条件,因为在地球阴影中,太阳能电力推进会经历零推力期。电力推进系统配置是通过权衡研究和不同供应商之间的比较来确定的。选定的方案包括 4 个氙气推进器,配备互补的电源处理单元和推进剂管理系统,总转移时间不到 4 个月。通过在 GEO 中改变推进器的配置,转移轨迹和在轨机动都使用相同的推进系统。