ivisbrite红色f-luc-gfp慢病毒颗粒是自动激活的,重组无能力的慢病毒颗粒,这些颗粒载有红移的卢西里卡意大利荧光素酶透明酶转基因在稳定的UBC启动子的控制下。通过T2A“自切除”接头肽将荧光素酶转基因融合到绿色荧光蛋白(GFP)基因中,以有效地与选择标记物共同表达。慢病毒颗粒从囊泡口腔炎病毒(VSVG)中用G糖蛋白进行拟型型,从而有效地转导了多种哺乳动物细胞,包括大多数癌细胞系,原发性,茎和非生动细胞。含量•一(1)个小瓶,含有200μl的慢病毒颗粒,浓度为1x10 7 /ml库存= 2x10 6在200μl磷酸盐缓冲盐水中的总慢病毒颗粒。•包装材料提供了足够数量的慢病毒颗粒,可至少转导一条细胞系。
使用自然衍生的AAV的当前与腺相关病毒(AAV)基因治疗受到非最佳组织靶向的限制。在治疗肌肉疾病(MD)时,通常需要高剂量,但会导致严重的不良反应。在这里,我们合理地设计了一种aav capsid,该capsid特异性地靶向绞肌以降低治疗剂量。我们将骨骼肌受体的人内整合素alphav beta6的结合基序计算整合到肝脏capsid中。与父母相比,设计的AAVS显示出更高的生产率和优质的肌肉转导。一种变体LICA1,示例可与其他肌肉AAV相比的肌肉转导,肝脏靶向降低。lica1在包括非人类灵长类动物在内的物种之间观察到了肌体性。因此,LICA1(而不是AAV9)有效地以低剂量(5E12 VG/kg)的两种小鼠MD模型(雄性小鼠)提供了治疗性转基因和改善的肌肉功能。这些结果强调了我们设计方法对MD基因疗法的AAV工程和LICA1变体的潜力。
听力损失是影响全世界数百万人的目前有限治疗方案的主要健康问题。在Clarin-2降低的CLRN2 /小鼠中,此处用作进行性听力丧失的模型,除了先前证明的头发束结构和机械电透射的缺陷外,我们还报告了突触听觉差异。,我们寻求对病毒介导的基因脱粒的深入评估,作为这些助听器障碍小鼠的一种疗法。补充鼠CLRN2或人类CLRN2基因在处理过的CLRN2 /小鼠中正常听力。相反,在与中度到重度后听力损失的患者中鉴定出的CLRN2的突变形式,无法防止听力损失。clarin-2的异位表达成功地阻止了立体胶体的丧失,保持正常的机械转导,保留的内毛细胞突触功能,并确保随时间的时间差异。在丢失转导的立体核细胞之前交付CLRN2时,观察到最大听力保存。我们的发现表明,基因治疗对于治疗与CLRN2患者突变相关的语言后听力障碍和与年龄相关的聋人有效。
对获得和遗传性听力损失的分子复杂性有更深入的了解,促使内耳疗法的进步取得了巨大进步。尽管在恢复听力功能时,诸如人工耳蜗的扩增和人工耳蜗植入不同程度的效率,但缺乏针对基本的听力损失的FDA批准的药物治疗方法。最近的临床前研究表明,在鼠和非人类灵长类动物模型中取得了希望的结果,证明了获得的听力损失和遗传形式的有效转导和听力恢复。本综述对听力损失的基因疗法的最新发展进行了全面分析。特别是,我们关注的是具有感觉上皮和螺旋神经神经元功能障碍的条件,涵盖了遗传性和获得性病因。我们讨论了细胞类型特异性转导策略的最新临床前进步,并突出了临床试验的关键发现,探讨了探索听力损失基因治疗干预措施的临床试验。此外,我们解决了当前的局限性以及对将基因疗法作为听力损失患者的可行治疗选择的未来方向的见解。
图6。工程的衣壳表现出增强的过表达人,猕猴或小鼠直系同源物的细胞的转导增强。细胞用过表达质粒编码受体1。转染的细胞用每种AAV转导,并在72小时后通过RT-QPCR评估转基因mRNA表达。*处理过程中丢失的样本。(a)CAPSIDS 1-3单独评估并与父母血清型AAV9进行比较。受体靶向的衣壳在过表达受体1的细胞中表现出明显的转基因mRNA表达,但在转染控制条件下却没有明显增强。此外,这种功能的增益在受体的人,猕猴和小鼠直系同源物中得到了保守。(b)相对于对照的转基因表达的倍数增加。一个非线性回归模型用于每个衣壳受体条件的相对转基因表达值。然后将这些值缩放到每个衣壳的转染控制值。(C)在过表达人,猕猴或小鼠受体1的细胞中,工程上的衣壳介导更高的转基因表达。
摘要|睡美人(SB)转座子是脊椎动物基因转移的有前途的技术平台;但是,其基因插入的效率可能是主要细胞类型中的瓶颈。与第一代转座酶相比,哺乳动物细胞中的大规模遗传筛选产生了效率约100倍的过度转座酶(SB100X)。SB100X在富含造血干或祖细胞的人CD34 +细胞中支持35–50%稳定的基因转移。在免疫缺陷小鼠中基因标记的CD34 +细胞移植导致长期植入和造血重建。此外,SB100X支持体内小鼠肝脏转骨后的生理水平IX的持续(> 1年)表达。最后,SB100X可重复地导致45%稳定的转基因频率通过核心显微注射到小鼠Zygotes中。非病毒基因递送后,新开发的转座酶产生前所未有的稳定基因转移效率,与稳定的转导效率相比,与稳定的转导效率相比,预计在功能基因组学和基因疗法中广泛应用。
审查委员会的科学成员指出的一个主要批评,似乎是驾驶得分,围绕怀疑主义,临床前数据由于中枢神经系统内传输的细胞数量有限,因此临床前数据对患者有所帮助。例如,针对解决基本原理的标准,响应包括:“小鼠,大鼠和NHP的矢量生物分布表明,10,000中的1个中的1000元中有100个单元中的1个中的1个可能会表达矫正的转基因。so,将未校正99%至99.99%的中枢神经系统神经元。”该结论是基于量化rnascope数据的图(原位杂交以可视化表达的转基因mRNA),其中定量指标为“%正面”,而不是根据Y轴标签正确解释这些数据为“%正区域”,而是错误地将数据解释为转导的细胞的百分比。在组织切片中RNA的原位染色(RNASCOPOPOPO)似乎是细胞内定位的点状焦点,并且不填充细胞体积,因此即使总细胞的很大一部分总细胞表达了转基因,“%阳性面积”的原始定量始终是一个较低的数量。此RNASCOPE数据旨在确认转基因的表达,并提供转导空间分布的一般定性可视化,不应用作转导的细胞数量的度量。从大鼠和NHP提供的生物分布数据显示约10%的接收矢量DNA的细胞是对靶向细胞数量的更准确和定量的度量。CIRM应用中的所有临床前数据都从我们的同行评审出版物中获取(Chen X等,JCI,2023)。我的总体意义是,对临床前数据的这种误解使审稿人对整个计划的看法蒙蔽了致命的缺陷,从而导致了低分和拒绝的决定。如果对临床前数据的正确理解对应用程序进行了审查,我相信可以给予该程序的强大优点,从而更加考虑,从而导致不同的审查结果。
图 3:Mb 中能量转导的分子途径。(a)Mb 的结构,不同坐标根据其 PEF 的大小以不同颜色表示。(b)His93 作为血红素和蛋白质骨架之间的连接器(蓝色原子)。标记了对引导血红素能量至关重要的五个内部坐标。(c)仔细观察血红素面向 Mb 内部和外部的部分的 PEF 差异。(d)通过 !! , ! "(蓝色)和 # ! , # " , # #(红色)的 PEF。
恶性癌细胞会不受控制地增殖,并可能转移到远处器官。转移的一个关键步骤是癌细胞在扩散到远处器官之前侵入邻近组织的能力。因此,了解侵袭机制可能有助于发现新的可用药物靶点以防止转移。在本项目中,使用 CRISPR 敲除筛选体外研究了人类黑色素瘤细胞的侵袭性。为此,评估了三个汇集的 CRISPR 文库,然后选择其中一个进行筛选。在验证了所选表观遗传敲除文库的 gRNA 表示后,生成了一个慢病毒文库以转导 A375 黑色素瘤细胞。然后使用 Matrigel 侵袭室通过优化的侵袭试验检查突变黑色素瘤细胞的侵袭性。将转导的黑色素瘤细胞接种到上室中,并使其通过 Matrigel 迁移到具有更高化学引诱剂浓度的下室。随后分别收集上室和下室细胞,分离基因组DNA,通过PCR扩增制备测序文库,并用Illumina新一代测序技术进行测序。本报告不包含CRISPR筛选的测序数据。