同步机或旋转变压器是一种用于测量旋转角度的旋转电变压器。这些设备可以描述为具有初级和次级线圈的普通变压器。初级线圈是通常被激励的转子,次级线圈是定子。同步变压器的初级绕组固定在转子上,由正弦电流激励,该电流通过电磁感应使电流在定子上彼此成 120 度固定的三个星形连接的次级绕组中流动。测量次级电流的相对大小并用于确定转子相对于定子的角度,或者可以使用电流直接驱动与同步机同步旋转的电动机。在后一种情况下,整个设备也称为自同步器。同步机激励到转子的输出电压由以下方程式描述:
公共引线电阻中的电流将产生直流偏移电压。即使是积分 A/D 转换器的自动归零电路也无法消除此误差。但此外,此电流将具有几个变化的分量。时钟振荡器及其驱动的各种数字电路将显示时钟频率下的电源电流变化,并且通常还会显示时钟频率的分数。对于逐次逼近转换器,这些将导致额外的有效偏移。对于积分转换器,至少高频分量应该平均。在某些转换器中,模拟电源电流也会随时钟(或分数)频率而变化。如果显示器是多路复用的,则该电流将随多路复用频率而变化,通常是时钟频率的一小部分。对于积分转换器,数字和模拟部分电流都会随着转换器从一个转换阶段转换到另一个阶段而改变。(注入自动调零环路的这种电流特别顽固。)另一个严重的变化源是数字和显示部分电流随结果值的变化。这经常表现为振荡结果和/或缺失结果;显示的一个值将有效输入替换为新值,该新值被转换和显示,导致不同的位移、新值等等。此序列通常在按顺序显示两个或三个值后关闭。
第 1 章 数据转换器历史 Walt Kester 章节前言 本章的灵感来自 Walt Jung 在其著作《运算放大器应用》(参考文献 1)第一章中对运算放大器历史的论述。他关于该主题的著作引用了数百篇有趣的文章、专利等,从整体上看,它们描绘了一幅运算放大器发展的迷人图景——从 Harold Black 早期的反馈放大器草图到现代高性能 IC 运算放大器。我们试图对数据转换器的历史做同样的事情。考虑到这项工作的范围——以及数据转换器的混乱和零散的发展——我们在组织材料方面面临着艰巨的挑战。我们没有将所有历史材料都放在这一章中,而是选择将其中的一些分散在整本书中。例如,第 3 章(数据转换器架构)中包含了与数据转换器架构相关的大部分历史资料,以及各个转换器架构描述。同样,第 4 章(数据转换器工艺技术)包含与数据转换器工艺技术相关的大部分关键事件。第 5 章(测试数据转换器)涉及与数据转换器测试相关的一些关键历史发展。为了尽可能使本书的每一章都具有独立性,一些历史资料在几处重复 - 因此,读者应该意识到这种重复是故意的,而不是粗心编辑的结果。其中之一如图 1.1 所示,可追溯到 18 世纪。第 1.1 节:早期历史 很难确定第一个数据转换器的确切制造时间或形式。本书作者所知的最早记录的二进制 DAC 根本不是电子的,而是液压的。奥斯曼帝国统治下的土耳其在公共供水方面存在问题,并建造了复杂的系统来计量水量。使用这种计量系统的实际大坝的一个例子是 19 世纪初在伊斯坦布尔附近建造的马哈茂德二世大坝,并在参考文献 2 中进行了描述。计量系统使用水库(在图中标记为集水箱),通过溢洪道保持在恒定深度(对应于参考电位),水刚刚从溢洪道上滴落(标准是流量足以漂浮吸管)。这在图 1.1A 中进行了说明。集水箱的水输出由浸没在水面以下 96 毫米处的带门控二进制加权喷嘴控制。喷嘴的输出为输出槽供水,如图 1.1B 所示。喷嘴尺寸对应于 1 lüle(= 36 l/min 或 52 m 3 /天)基本单位的二进制倍数和分数的流量。八 lüle 喷嘴被称为“sekizli lüle”,
摘要:由于人口的增长,该国对电力的需求正在增加。为了满足峰值负载需求,可再生能源(例如A.C.输入)可以与常规来源一起使用。但是,非线性电子设备的广泛使用导致网格连接系统中的功率质量问题。这是因为电源电子转换器将谐波注入系统,从而导致各种问题。在这项研究中,使用边界传导模式(BCM)提升和功率因数校正(PFC)转换器来提高功率质量。BCM DC-DC转换器是高频转换器,可通过降低DC总线电压来调节不受管制的d.c.功率并降低MOSFET上的电压应力。使用交织的脉冲宽度调制(PWM)来管理开关。减少进入和交付纹波电流并允许减少输出电容。DC-DC转换器的三个基本配置是雄鹿,增压和降压转换器。降压转换器可以降低或增加输入电压,而增强转换器由于其低和不受监管的输出电压而通常用于可再生能源系统中。通过模拟和硬件实施进行输出评估,从而显着提高了功率因数。
2。瞬时短路电流贡献(对故障水平的贡献):如果短路(电压的步骤变化),点1中描述的补偿电流有助于短路电流。通过有效的网格阻抗和断层阻抗以及整个系统的其他阻抗,在短时范围内确定了时间常数,相位位置和幅度。在短时范围之外,如果仍然存在故障条件,则可以根据特征曲线或可调节的系统特征以受控方式提供转换器电流的正顺序。第一响应与更高级别特征之间的过渡必须不间断,并且尽可能无震动。或者,在短时范围之外,转换器可以继续作为阻抗背后的电压源。快速电流限制以保护系统 - 例如发生故障,残留电压低(接近系统接近的短路) - 是允许的,并且不得导致同步损失。当前限制必须在其优先级方面参数化(例如true-ny-ny-try-ny-the Active或Reactive电流上的优先级)。在不对称网格故障的情况下,还需要针对计数器系统的定义系统行为。
PLC:编程逻辑控制器ST:结构文本FBD:功能框图IL:指令列表语言LD:梯形图语言语言语言VFD:频率可变驱动程序SFC:顺序函数sfc:顺序函数表图DC:直接电流AC:替代电流AC:替代电流SRC:Silicon-Controll-controll-Controll-Controlled Rected Rected Rectifier PMERSTORTINT/INTERS Strocition Stroptast/Intement Scart intermotion SCAD SCAD/INTELLITY PMERTISTION TIA/IPPORTIANS IPSOUTERITY TOC ip:ip ip ip ip:和数据采集HMI:人机接口IGBT:绝缘栅极双极晶体管
比例[1] - [2]。SCC输出阻抗与电容器值C fly和工作频率F SW的乘积成反比[3]。因此,将工作频率提高10倍或多或少地降低了具有相似因素的被动组件的足迹。但是,开关损耗增加了10倍,从而降低了功率效率。低功率 - 例如MW量表及以下 - 如图1如果保持大于90%的效率,则开关损耗限制了可实现的工作频率。由于工作频率有限,因此电容密度较高的电容器是增加功率密度(w/mm 3)[4] - [5]的替代方法。尽管如此,电容密度的增加限制为几个200 nf/mm 2 [6](深部电容器),无法保持低功率下的不可忽略的开关损失。另外的电容器和电感器,第三能量
1) 在断路器 (CB) 打开的情况下,以内部振荡器确定的固定频率为电力电子逆变器通电。这将为 LC 滤波器(与电网断开)通电。2) 将 PLL 同步到滤波器电压,并将逆变器电压控制从固定频率振荡器切换到 PLL。3) 关闭断路器以给网络通电。与任何电源的黑启动一样,网络上的负载必须与基于逆变器的电源的能力兼容。• 如果连接到通电网络,请使用同步检查继电器。
摘要 - 基于注意力的变压器的广泛采用和显着的计算资源成本,例如,视觉传输者和大型语言模型,驱动了对有效的硬件加速器的需求。尽管通常使用了电子加速器,但由于其高能量效率和超快速处理速度,人们对将光子学作为替代技术越来越兴趣。光子加速器已经证明了卷积神经网络(CNN)工作负载的有希望的结果,这些工作主要依赖重量 - 静态线性操作。但是,在有效地支持基于注意力的变压器体系结构方面,它们会遇到挑战,从而提出了有关光子学对高级机器学习任务的适用性的问题。主要障碍在于其不具体率在处理变压器固有的独特工作负载,即动态和全范围张量乘法。在这项工作中,我们提出了闪电转换器,第一个光功率,高性能和能量良好的光子变压器加速器。为了克服现有的光子张量核心设计的基本限制,我们引入了一种新型的动态动态光子张量核心DPTC,由基于干扰的光学矢量点发动机组成,支持高度平行,动态和全范围二元组乘积。此外,我们设计了一个专用的加速器,该加速器将我们的新型光子计算核与光子互连集成在一起,用于核心数据间广播,完全释放了光学功能。全面的评估表明,闪电转变器成就> 2。6×能量和> 12×延迟降低,并且与电子变压器加速器相比,能量成本最低,能量延迟产品低2至3个数量级,同时维持数字可靠的精度。我们的工作强调了光子学对于有效的硬件加速器的巨大潜力,尤其是用于高级机器学习工作负载,例如诸如变形金刚的大型语言模型(LLM)。我们的实施可在https://github.com/zhuhanqing/lightening-transformer上获得。
多输入转换器拓扑是直流到直流转换器的组合,用于通过转换器的结构提高整个系统的可靠性、灵活性和效率,并实现对能源管理资源的更好监控。因此,多输入直流-直流转换器将特别受到许多应用的关注,例如微电网、储能系统、混合动力系统、电动和混合动力汽车、卫星系统等。随着转移增加可再生能源的利用率,已经提出了不同的拓扑来组合不同类型的可再生能源,例如光伏板,它具有直流电流和电压特性的优势,可以通过多输入直流-直流转换器集成。MI拓扑有两种类型:非隔离和隔离,非隔离拓扑基于电连接电路(ECC),隔离拓扑基于磁连接电路(MCC)。本文回顾了可用于混合船舶电气系统的多输入控制器(MIC)领域的发展和新趋势。研究了各种类型的MIC。讨论了各种类型的隔离和非隔离拓扑。