或功能受限的患者,使用脑信号控制辅助医疗设备的能力将极大地改善生活质量。例如,患有肌萎缩侧索硬化症 (ALS) 或四肢瘫痪的患者在交流和运动控制方面有严重的障碍。对于 ALS 患者,眼动追踪可以为这些人提供控制设备的选择,但这项技术依赖于光照条件和完全眼球活动,而这在 ALS 晚期可能会受到限制。1 最近两项基于皮层脑电图 (ECoG) 的脑机接口 (BCI)(记录、放大和转换成外部设备计算机命令的系统)的研究为这些患者通过恢复交流或运动控制能力来改善对身体限制的自我管理带来了希望。2,3 在这篇综述中,我们主要关注两种功能障碍和发病率高的疾病——ALS 和四肢瘫痪,BCI 技术在这两种疾病中得到了最广泛的应用。
印度奥里萨邦鲁尔克拉 shrutisnehadas[at]gmail.com 摘要:Brain Gate 是由生物技术公司 Cyber kinetics 于 2003 年与布朗大学神经科学系合作开发的。该设备旨在帮助那些失去对四肢或其他身体功能控制的人。植入大脑的计算机芯片可监控患者的整个大脑活动,并将用户的意图转换为所有计算机命令。目前,该芯片使用 100 个细如发丝的电极来“听到”大脑特定区域神经元的放电。例如,控制手臂运动的区域。这些活动被转换成带电信号,然后使用程序发送和解码,从而移动手臂。根据 Cyber kinetics 网站的信息,已有两名患者植入了该 Brain Gate 系统。 1. 简介 Brain Gate 是由生物技术公司 Cyber kinetics 于 2003 年与布朗大学神经科学系合作开发的。该设备旨在帮助那些失去对肢体或其他任何身体功能控制的人。植入大脑的计算机芯片可监测患者的大脑活动,并将用户的意图转换为一些计算机命令。目前,该芯片使用 100 个细如发丝的电极来“听到”大脑特定区域(例如控制手臂运动的区域)的神经元放电。这些活动被转换成带电信号,然后使用计算机程序发送和解码,从而移动手臂。据 Cyber kinetics 网站称,已有两名患者植入了此 Brain Gate 系统。除了实时分析神经元模式以传播运动外,Brain-gate 阵列还能够记录电子数据以供日后分析。此功能的潜在用途是让神经科医生研究癫痫患者的癫痫发作模式。Brain-gate 目前正在招募患有一系列神经肌肉和神经退行性疾病的患者,在美国进行试点临床试验。该系统的整个技术基于思维上传。脑电图 (EEG) 脑电图 (EEG) 是一种通过大脑神经细胞发出的电信号记录大脑每一项活动的设备。它们记录所有神经连接的每一个模式和图像,并通过芯片发送回计算机。
政府强烈反对 HJ 44 号决议,不批准美国司法部烟酒火器和爆炸物管理局关于“带‘稳定支架’的枪支的保管标准”的规定。几十年来,联邦法律对某些类型的枪支(包括短管步枪)实施了更严格的监管。理由很明显:短管步枪比长枪更易于隐藏,但远距离射击比传统手枪更危险、更准确。由于这些原因,它们特别致命,这就是为什么国会自 1934 年以来一直将它们视为危险且不寻常的武器,并受到严格监管。然而,最近,枪支行业通过制造和销售所谓的“稳定支架”来规避这项长期存在的法律,这些支架可以将重型手枪转换成短管步枪。由于这一行业创新,过去几年中我们目睹了包括俄亥俄州代顿市和科罗拉多州博尔德市在内的大规模枪击事件的枪击者在重型手枪上使用这些“支撑”装置来造成大规模屠杀。
这句话原本是关于科学家在电影《侏罗纪公园》中创造食人恐龙的,但它同样适用于企业对人工智能的使用。人工智能(“AI”)对许多人来说是一个难以接近的话题。大数据、机器学习、神经网络、算法、深度学习和物联网——有太多的技术流行语,很难全部理解。2 媒体对人工智能的描述对提高公众对人工智能的理解帮助不大。媒体通常将人工智能描绘成能够回答任何问题的人工智能,或者呈现一个人工智能试图摧毁人类的反乌托邦社会。3 重要的是要认识到人工智能的现实及其法律和社会影响,即使人工智能难以捉摸的能力可能会模糊虚构与现实之间的界限。4 从最简单的意义上讲,人工智能就是机器将输入的数据转换成可识别模式和/或然后使用这些模式制定决策的能力。5 这些决策可以是任何事情,包括如何穿越环境、使用什么字体来最大化销售额,甚至是预测明天的天气这样复杂的事情。
背景:我们正在构建一台室温、光学量子计算机,该计算机能够即时解决特征学习和分类问题,该技术目前在印度理工学院曼迪分校 CQST 处于 TRL 5.0 阶段。通过将量子比特转换成具有 20 个面的 3D 激光全息图(类似于二十面体),我们的计算机利用 16 个并行通道,提供相当于 16x320 个量子比特。凭借先进的用户界面、量子模拟器和量子处理能力,我们的计算机可作为图形处理器(GPU 而非 CPU)运行,无缝处理视频或照片等输入。它提取一个模型来解释隐藏在输入数据中的固有动态,并以量子实时馈送的形式提供输出。编写量子算法非常繁琐,但我们的计算机却能反映出科学家的好奇心,能够迅速为未知大数据提出一个准确率高达 86% 的近似理论模型,而且所有这些都无需依赖算法。
神经性听力损失通常是由于外界刺激或遗传因素导致耳蜗毛细胞受损,无法将声机械能转换成神经冲动所致。成年哺乳动物耳蜗毛细胞不能自行再生,因此这种类型的耳聋通常被认为是不可逆的。对毛细胞分化发育机制的研究表明,耳蜗内非感觉细胞通过特定基因(如Atoh1)的过表达获得分化为毛细胞的能力,使毛细胞再生成为可能。基因治疗是通过体外筛选和编辑靶基因,将外源基因片段导入靶细胞,改变基因的表达,启动靶细胞相应的分化发育程序。本文总结了近年来与耳蜗毛细胞生长发育相关的基因,并概述了基因治疗方法在毛细胞再生领域的应用。最后讨论了当前治疗方法的局限性,以促进该疗法在临床环境中的尽早实施。
电 - 电是电能的流动。当被称为电子的微小粒子在电路中移动时,就会产生电能。电子 - 带负电的亚原子粒子,带电时会在原子之间跳跃。电路 - 导电材料的闭合环路,电流可以通过路径从电源流到负载,再流回电源。负载 - 使用电能的组件。灯泡、电动机、电器电源 - 电能的来源。电池、太阳能电池板、发电厂、风力涡轮机路径 - 允许电子流过的导电材料。发电厂 - 将物理能转换成电能的地方。传输 - 将电能从发电地点批量移动到变电站和社区电网供消费者使用。发电 - 将一次能源(热能或动能)转化为电能的过程。可再生电力 - 由永不枯竭的可再生能源产生的电力,例如风能、太阳能、水能、生物质能。不可再生电力 - 由会耗尽的不可再生能源产生的电力,例如煤炭、石油、天然气、核能。
用于电信设备,即用于操作电信系统的计算机程序、用于提供多用户接入全球通信网络以传输和传播大量信息的计算机程序;由数据发射机组成的磁、电和光纤网络,将用户信息转换成数据信号进行传输,或将接收到的数据信号重新转换成用户信息;在数据终端之间传输数据的设备,即通信集线器;用于上传、存储、检索、下载、传输和交付数字内容的计算机硬件;电信发射机;电信设备,即连接电路中的电桥的终端元件;文字处理器;计算机设备,即微型计算机、小型计算机、计算机中央处理器、计算机微处理器、计算机显示器、计算机键盘、计算机终端、计算机接口板、计算机激光打印机、计算机击打式打印机、计算机点阵打印机、计算机操作系统、作为一个单元出售的计算机和使用说明书;计算机接口设备,即计算机调制解调器、计算机鼠标和鼠标垫、计算机外围设备及其零件;用于操作企业管理系统的计算机程序,即为生成评估、审计和报告而设计的程序,以及作为一个单元出售的相关使用说明书;音频、视频和数据通信设备,即数字和模拟信号发送器、接收器和转换器,无线电和电话发送器、接收器和服务器;用于电子交换数据、图像和信息的电子邮件计算机硬件和软件;电视遥控器和机顶盒;电视信号解码器;交互式电子音频和视频会议设备,即变压器、平衡器、与计算机、计算机外围设备、电视、音视频设备、闭路电视设备和电信设备连接的电缆,用于促进消费者与商品和服务提供者之间的互动;用作专门时间记录装置的计时器;计算机空白光盘;计算机空白软盘;计算机空白硬盘;光盘播放器;录音机和录像机;录音带和录像带播放器;录音带和录像带录制机;录音带和录像带播放器;空白录音带和录像带、盒式磁带、磁盘和缩微胶片;包含电信信息的录音带和录像带、盒式磁带、磁盘和缩微胶片;视频监视器、自动售货机及其计时装置及其零部件;磁码卡阅读器、磁卡、空白磁性数据载体、磁带消磁器、及其组件;计算机、数据和视频网络及会议设备,即由变压器、平衡-不平衡转换器、与计算机连接的电缆、计算机外围设备、电视机、音视频设备、闭路电视设备和
未来学家认为,医疗保健领域的人工智能 (AI) 革命已经到来。1 虽然现在很流行,但这个概念并不新鲜,70 年前艾伦图灵描述“思考机器”时就首次提出了这个概念。2 约翰麦卡锡后来创造了“AI”一词,表示让计算机做一些事情的想法,而如果由人来做,则被认为需要智能。3 新的东西是从电子健康记录 (EHR) 到基因和微生物组等一切的数字化,它们提供了 AI 学习所需的数据。将图像、手写笔记和病理幻灯片转换成 1 和 0,使机器能够执行各种各样的任务,例如检测视网膜病变、皮肤癌和肺结节。 4-6 尽管可用数据的激增超出了个人和团队实际管理的能力,但计算机已经学会了如何处理这些数据,以预测对患者重要的结果,包括阿片类药物滥用、急诊就诊和死亡。7-9 这样的进步促使谷歌生命科学子公司的首席执行官安迪·康拉德宣称,在医学领域,“最重要的工具是计算机。”10
二维材料,如石墨烯、六方氮化硼 (hBN) 和过渡金属二硫属化物 (TMD),本质上具有柔韧性,可以承受非常大的应变(> 10% 的晶格变形),并且它们的光电特性对施加的应力表现出清晰而独特的响应。因此,它们在研究机械变形对固态系统的影响以及在创新设备中利用这些影响方面具有独特的优势。例如,二维材料可以轻松地将纳米级机械变形转换成清晰可检测的电信号,从而能够制造高性能传感器;然而,同样容易的是,外部应力可以用作“旋钮”来动态控制二维材料的性质,从而实现应变可调、完全可重构的设备。本文回顾了在纳米级诱导和表征二维材料机械变形的主要方法。在介绍有关这些独特系统的机械、弹性和粘合性能的最新成果之后,简要讨论了它们最有前景的应用之一:实现基于振动二维膜的纳米机电系统,该系统有可能在高频率(> 100 MHz)和大动态范围内运行。