X射线Ptychography的未来(一种连贯的衍射成像方法)有望实现的分辨率和实验效率,同时探测了越来越复杂的样品的特征。这是通过复杂的成像方法启用的,结合了高度优化的硬件,软件和过程。在本文中,解决了X射线ptychography实验的几个方面,强调了通过使用多个光束实现的增强的多功能性和有效性。从对纳米化的全面理解开始,讨论了聚焦X射线光学的生产。具体而言,开发了直接作品的岩性过程,并描述了其细节,特别强调了在50 kV加速度电压下在化学上半弹性抗性的情况下进行电子束光刻。此过程既多功能又精确,最终促进了菲涅尔区板(FZP)的制造。因此,论文报告了几个并联的几个FZP的应用,用于生成多个X射线梁以执行Ptychography。特别是研究了对标准Ptychographic方法的新型扩展。对多光束X射线PTYChography的研究始于紧密间隔的FZP,以线性阵列排列在同一芯片上,模拟和推进了先前关于该主题的研究,并证明了自制硬件的准备就绪,以实现更复杂的实现。最值得注意的是,FZP彼此之间的接近48 µm,并且最多可以使用三个梁,从而将视场(FOV)扩展了三倍。接下来,引入了一种新颖的设置,在多光束X射线ptychography的背景下促进了适应性的概念,这要归功于堆叠和机动的FZP。在测量之间将焦点光学元件移动的可能性赋予上述设置前所未有的多功能性。对于实验,样本更改或检测条件的每个新迭代,光学元件不必重新设计。足以使用各自的电机并将设置适应新的测量值。金纳米晶簇用各种梁的间距成像,从而在样品上同样间隔区域进行成像,并将FOV扩展到两个倍。这种设置的成功导致其在更复杂的测量中实现,最终导致表现出同时的多光束和多块Ptychography,这两个从未被放在一起。两层样品,与单光束Ptychographichographic测量值相比,层到层的分离范围从1400 µm降至100 µm,分辨率没有损害。最后,FZP的聚焦作用与策划
石墨和Li Metal之间的超密集相对于锂离子电池(LIB)和石墨插入化合物(GICS)的研究很重要。然而,由于有关C 2 li的有限信息以及将C 2 li与C 6 li区分开的困难,用于合成C 2 li的详细方法仍然未知。因此,我们在高压和高达10 GPA和400℃的高压下,在样品上进行了原位X射线衍射测量。我们采用了两种类型的C 2 li样品;一个是C 6石墨粉和Li金属(C 6 + 3 li)的混合物,另一个是C 6 li和li金属的混合物,其中C 6 Li是通过在Libs中发生的电化学放电(还原)反应制备的。根据C 6 Li或C 2 Li的001衍射峰考虑D值的变化,C 6 Li + 2Li适用于合成C 2 LI,尽管应除去用于电化学反应的非液压电解质,以避免在较低的C 12 LI和C 18 LI期间避免结构转换,以免使用结构转换。这些发现铺平了迈向合成C 2 li的方法的道路,该方法可能会增加LIB的能量密度并使用新颖的物理和电子特性建立GIC。
Laura M de Kort,Masoud Lazemi,Alessandro Longo,Valerio Gulino,Henrik P Rodenburg等。使用X-Ray Raman谱学解密了纳米固体电解质中界面诱导的高LI和Na离子电导率的起源。高级能源材料,2024,10.1002/aenm.202303381。hal-04411755
抽象的X射线衍射(XRD)是表征电杂色材料薄膜的必不可少的工具。但是,对于初学者而言,由于操作模式和测量类型的数量以及对结果模式和扫描的解释,首先可能是一种艰巨的技术。在本教程文章中,我们为使用XRD进行首次测量的薄膜工程师/科学家提供了基础。我们简要介绍了该仪器的衍射原理和描述,详细介绍了相关的操作模式。接下来,我们引入了薄膜表征必不可少的五种测量值:2次扫描,放牧的含量扫描,摇摆曲线,极图和方位角扫描(或ϕ扫描)。提供了选择适当的光学元件,安装和对齐样品以及选择扫描条件的实用准则。最后,我们讨论了数据分析的一些基础知识,并就数据呈现提供了建议。本文的目的是最终降低研究人员进行有意义的XRD分析的障碍,并在基础上建立基础,发现现有文献更易于访问,从而实现了更高级的XRD调查。
3D冷冻打印(3DFP)将按需滴落(DOD)喷墨打印与冷冻铸造相结合,以制造具有定制几何形状的轻质多功能气凝胶。冷冻铸造是一种高效且易于实施的方法,能够为许多不同的应用制造多孔海绵状结构。该过程通过控制制造条件和冷冻动力学来定制最终产品的微观结构(即孔隙形貌、排列、平均尺寸分布等)。它与DOD打印的结合提供了设计宏观结构的能力,而无需依赖模具,正如报道的由石墨烯、银纳米线和其他纳米复合材料制成的3D冷冻打印气凝胶一样。在本文中,我们使用市售的胶体二氧化硅墨水进行了原位X射线成像,以了解3DFP中的内部过程动态。我们研究了具有以下层次结构的3DFP过程:首先,单个液滴;然后,从液滴聚结中获得均匀的线条;最后,逐层沉积三条连续的线条。借助 X 射线成像,通过观察印刷线尖端后的冻结前沿内部,现场显示了材料沉积和冻结速率之间的平衡的重要性。通过观察到的从下层到上层的冰晶,还显示了基板温度对消除不良界面边界的影响。
XRD 有着悠久而辉煌的历史,始于 1895 年,当时威廉·康拉德·伦琴发现了 X 射线,并因此于 1901 年获得了首届诺贝尔物理学奖。十年后,马克斯·冯·劳厄发现了晶体中原子的重要性,并开发了一种数学理论来模拟 X 射线的衍射,以揭示原子级晶体物质的结构。此后,许多科学家使用 X 射线衍射来研究晶体学,随后许多科学家获得了诺贝尔物理学奖、化学奖、医学奖或生理学奖——最著名的可能是 1962 年因发现 DNA 分子结构而获奖的诺贝尔奖。
新月形免疫学研究所(Bric-NII)提出了一个小型研讨会和“大分子X射线晶体学和蛋白质结构预测”的研讨会。加入我们,参加一个沉浸式的为期3天的活动,其中包括该领域的主要专家的演讲,并进行了一个探索大分子X射线晶体学和结构预测的理论和实践方面的研讨会。
您将收到医疗保健和医疗保健提供系统的简介。您将研究医疗保健专业人员面临的法律和道德问题。您将讨论医疗保健职业所需的人际关系和就业能力,重点是团队合作,沟通和压力管理。除了批判性思维和冲突管理的技能和技术外,您还将学习处理悲伤和损失的方法。信用单位:3.0先决条件:无需先决条件:无等效课程:无
1 UMR 1107插入/UCA,Chu Clermont Ferrand,Universit和Clermont Auvergne,Neurmont Ferrand,法国; sylvain.lamoine@uca.fr(S.L.); (M.C。); David.A.Barrien.com(D.A.B.); vanexs_63@glass.com(V.P.); (M.F.); laetitia.prival@uc.fr(L.P.); julie.barri@uca.fr(J.B。); funfish-fill.fr(l.b。);大卫。); youussef。); alain.eschanger@uca.fr(A.E。)2 IGRS,CNR,INSERM,FACUL和DESIGN,UNIVERSIT和CLERMONT AUVERGNE,63000 CLEMONT-FERRAND,法国; emilie.big enmity.fr(E.B.); benjamin.bertin@uca.fr(B.B.); yoan.enabled@uca.fr(y.r。)3秋天和法国63000 Clermont Ferrand的Clermont Auvergne的病人陪伴的灾难; Clermont-Ferrand,诊所和创新,63000 Clermont Ferrand,法国6镇痛研究所,Facul and Decine,BP38,63001法国Ferrand *通讯员:繁华Syromes@uca.fr;电话: +33-(0)-4-7317-8235;传真: +4-4-7327-7162