传统系统和控制理论依赖于基于模型的方法,该方法假设要控制的系统的精确数学模型的可用性。但是,随着工程系统越来越复杂,得出准确的数学模型变得具有挑战性。同时,技术的进步提供了对数据的前所未有的访问,从而使数据驱动的方法成为基于模型方法的变革性替代方案。本课程为数据驱动的控制提供了全面的介绍,为参与者提供了直接从系统数据分析和设计反馈控制器的工具。它深入研究了该领域的前沿发展,重点是数据信息框架,该框架确定了收集的数据足以有效地解决分析和控制问题的条件。通过本课程,参与者将学习如何利用数据进行控制设计,而无需明确的数学模型。实际案例研究和应用将证明如何应用数据驱动的技术来应对现实世界中的工程挑战,例如机器人技术,自主系统和工业过程控制。课程整合了系统理论,线性代数和数学编程的核心概念,从而确保参与者获得理论见解和实践技能。为硕士和博士设计。电气,控制和计算机工程的学生以及研究人员和专业人士,本课程为与会者做好了准备,以应对具有创新解决方案的现代,数据丰富的工程系统的挑战。课程参与者将使用MATLAB,PYTHON等工具进行互动讲座,动手实验和软件模拟获得知识。案例研究和现实世界的应用将进一步激发研究动机,确保参与者有能力应对基于数据的系统和控制中的当代挑战。
动态系统。(v)通过使用软件模拟非线性系统和混乱系统,为参与者提供动手体验,以观察不同混沌系统及其吸引子的行为。(vi)探索蝴蝶效应的概念,并增强参与者了解小变化如何导致结果的显着差异。(vii)通过使用算法生成分形的实践练习来增强对参与者的理解,并探索产生的分形的自相似特性。(viii)通过基于混乱的加密或数据安全机制,提供实用问题及其解决方案的暴露。(ix)提供了设计和建模混乱系统的练习,并培训参与者创建自己的混乱模型并分析其行为。(x)探讨混乱理论在物联网和密码域中的含义和应用。课程目录L1:动力学系统简介:逻辑图。l2:时间逆转不变性,可观察的数量,不断发展和不变概率度量。t1:logistic图和其他一维离散动态系统的发展和不变概率的模拟。l3:liouville方程。l4:求解liouville方程式和使用fokker-planck方程。t2:简单连续的一维动力系统的发展和不变概率的模拟以及概率的数值计算。l5:牙齿和混合。l10:玻尔兹曼方程。L6:混乱理论和非线性系统简介。蝴蝶效应和对初始条件的敏感依赖性。T3:混沌系统的模拟。产生分形并理解自相似性。l7:混沌系统中的分形和自相似性。l8:混乱和奇怪吸引者的动态。t4:物联网设备和网络中的混乱应用程序。设计混乱的系统模型。l9:混乱及其在物联网和密码学中的应用。L11:简单动力学系统的线性和精确响应的比较。L12:耗散函数和一般反应理论。 T5:简单分子动力学系统中的响应。L12:耗散函数和一般反应理论。T5:简单分子动力学系统中的响应。
人类诱导的多能干细胞(HIPSC)被认为是医学中有前途的工具,有可能解除许多健康状况(例如神经退行性疾病和疾病)的治疗方法。但是,产生大量HIPSC仍然是一个挑战。Fraunhofer翻译中心的研究人员在Fraunhofer Insti-tute的硅酸盐研究ISC中使用了一种生物反应器,可用于自动化HIPSC的长期培养。人类诱导的多能干细胞(HIPSC)具有开发细胞疗法和药物以及疾病研究的巨大潜力。HIPSC与胚胎干细胞非常相似,但是它们在从成年受试者的结缔组织的成年细胞中进行了培养和重编程。优势是多能干细胞具有生产几乎任何类型的细胞或组织,而这些细胞或组织需要为自我修复目的而产生。也可以直接对受特定健康状况影响的细胞进行特定于患者的测试。为了满足对HIPSC的不断增长的需求,并允许大量的标准化生产,来自Würzburg的Fraunhofer ISC的一组研究人员已经开发了一种Dy-Namic孵化器和悬架生物反应器,可用于长期培养HIPSC的SUSI(susi for Subsie for for for for susi for for susie for for suspension for for susteension for susteensial insportion insportion of superension invopport'')。它提供了最佳条件,例如37摄氏度的温度和饱和含量为5%的CO 2的大气,这两者都是培养细胞的必要条件。生物反应器的一个关键组成部分是叶轮,一种搅拌器,它执行混合,充气和热量的重要任务,并在玻璃容器内部进行混合,充气和质量转移,以在细胞悬浮液内形成均匀的条件,从而实现了可靠的和可重复的细胞传播。“我们专注于细胞的好处,并考虑到这一点的生物反应器的所有组成部分,” Fraunhofer TLC-RT的科学家Thomas Schwarz说。例如,一个关键因素是在搅拌或搅动培养过程中影响细胞的剪切力。研究人员使用软件模拟来计算Impeller设计的最佳参数以及最有效的过程参数。bi-eActor内部的传感器连续监测这些参数,从而确保细胞悬浮培养物中的同质性,即使有大量细胞。玻璃容器封闭叶轮的玻璃容器也可与此设计一致。
摘要:清洁能源来自不排放任何污染物(尤其是二氧化碳等温室气体,而二氧化碳会导致气候变化)的发电系统。因此,清洁能源的日益普及促进了旨在保护环境和减少天然气和石油等不可再生燃料所造成的问题的创新。然而,能源资源的过度消耗和浪费造成了严重的问题。为了解决这个问题,人们提出并实施了各种策略。例如,研究人员利用可再生能源引入了新的、更高效、更环保的能源消耗方式。本研究调查了柔性混合动能太阳能收集系统的多配置集成性能分析。随着对可持续能源解决方案的需求不断增加,动能和太阳能收集技术的集成为提高效率和灵活性提供了有希望的机会。电力是通过安装在人行道上的光伏 (PV) 板和多个串联-并联配置的压电设备的组合产生的。产生的电力为可充电电池充电,可在紧急情况下为低压应用供电。此外,还开展了研究,以提高太阳能电池板的输入电压和板中压电蜂鸣器的效率配置,以测量这两个来源的充电系统效率。该研究探讨了动能和太阳能收集组件之间的协同作用,考虑了能量输出、系统适应性和成本效益等因素。此外,还检查了各种物体在压电蜂鸣器上移动时产生的电荷。每个太阳能电池板和踏板都将包括一个 16 x 2 LCD 显示屏,该显示屏将显示太阳能电池板的输出性能和施加压力时的压电蜂鸣器。使用 Multisim 和 Proteus 软件模拟电力混合收集,它们监视输入和输出参数。Multisim 软件用于为太阳能和压电系统创建 AC-DC 电路,Proteus 模拟由 Arduino Uno R3 控制的混合电力收集和储能电路。总之,该产品可以提供高达 5 V 的大量输出,并通过 Blynk 应用程序发送通知。这项研究为灵活混合能量收集系统的设计和优化提供了宝贵的见解,推动了各种应用的可持续能源解决方案的开发。
摘要:近年来,车辆事故非常高,每天的事故图表不断上升。这是因为车辆人口的需求量很高。由于这些事故,生命和财产受到严重威胁。使用计算机辅助系统是提高汽车安全性和性能的重要一步。研究该项目的主要目的是,它有助于设计一种可以扫描周围环境并自动施加刹车的设备,因为它检测到其前面的一些障碍。它有助于防止因醉酒,皮疹驾驶和失控而导致的事故。关键字:气动控制器,光传感器,电磁阀1。介绍现在驾驶日子是大多数人的强制性活动。随着人口的增加,车辆数量也开始增加。这一代传感器丰富,分布式自主控制的最新发展对现代汽车车辆的设计产生了深远的影响。与通信网络一起在整个车辆中提供了可靠的嵌入式微电子机构提供的智能,从而实现了控制系统,从而很好地增强了涵盖乘客舒适,安全和环境效果等方面的车辆性能。除此之外,它还有助于提高车辆的性能,这些性能从使用大量系统动态模型的软件模拟技术的开发中获得,以实现改进的车辆控制策略。2。自动制动系统是一项技术,可以使汽车与另一个车辆,人或障碍物或诸如高刹车之类的危险或施加刹车来减速车辆而没有任何驾驶员输入的情况。雷达,视频,红外超声波或其他技术等传感器可用于检测障碍。GPS传感器,可以检测固定危险,例如通过位置数据库接近停止符号。在车辆前检测到该物体时,车速降低并同时弹出气动保险杠,以防止事故和车辆的损坏。是否需要在车辆中自动制动?在此过程中进行的所有过程都没有任何驱动程序输入,因此具有自动制动器的车辆不会有所不同。如果驾驶员完全警惕,他们永远不会注意到车辆中有一个自动制动系统。自动制动可以挽救该车辆旅行的人们的生命。此过程专门设计为防止分心的驾驶的保障,如果驾驶员碰巧在方向盘后入睡,该技术也可以挽救生命。这种非常常见的后方事故的数量可以通过最新的自动
1. 为期一周的国家级在线 STTP IV,主题为“使用 AI 的 5G 无线网络的 AI-MIMO 毫米波和大规模 MIMO 应用”,2021 年 4 月 26 日至 5 月 1 日,由 GRIET(海得拉巴)组织。 2. 为期一周的国家级在线 STTP III,主题为“认知无线电通信中可重构天线的设计和实施趋势和挑战,以提高频谱接入”,2020 年 9 月 14 日至 19 日,由 VR SIDDHARTHA ENGINEERING COLLEGE(维杰亚瓦达,安得拉邦)组织。 3. 为期一周的 AICTE 培训与学习 (ATAL) 学院在线 FDP,主题为“设计思维”,2020 年 9 月 7 日至 11 日,由特里凡得琅工程学院组织。 4. 为期两周的在线教师发展计划,主题为“揭开 5G RF ASIC 的神秘面纱”,2020 年 8 月 24 日至 9 月 4 日,由印度理工学院古瓦哈提分校电子与 ICT 学院组织。 5. AICTE 赞助为期一周的在线短期培训计划 (STTP- II),主题为“使用 Ansys HFSS 进行电磁学、微波、射频和天线设计”,2020 年 8 月 24 日至 29 日,由 Shri Vishnu 女子工程学院 Bhimavaram 组织。 6. 为期一周的 AICTE-MHRD 赞助的在线 STTP 第二阶段,主题为“用于 5G 和 IoT 应用的微型天线设计”,2020 年 8 月 10 日至 15 日,由 MVGRCE 组织维齐亚纳加兰。7. AICTE 赞助了为期一周的在线短期培训计划 (STTP- I),主题是“认知无线电通信中可重构天线的设计和实施趋势和挑战,以增加频谱接入”,2020 年 7 月 20-25 日,由 VR SIDDHARTHA 工程学院、维杰亚瓦达、安得拉邦组织。8. 为期五天的在线 STC,主题是“使用 HFSS 的天线设计技术和软件模拟”,2020 年 7 月 13-17 日,由 ECE NITTTR、昌迪加尔组织。9. 为期一个月的使用 ANSYS HFSS 进行射频和天线设计的在线工业实习,2020 年 6 月 22 日至 7 月 14 日,由 Entuple technologies 与 ANSYS、IEEE 班加罗尔分会、MTTS 联合组织。10. 为期五天的在线 AICTE-MHRD 赞助了在线 STTP 第一阶段“设计
电子束光刻:根据应用,将电子束光刻胶 (950K PMMA A4,MicroChem) 旋涂至 270 nm-330 nm 的厚度。接下来,在顶部热蒸发 20 nm Au 的导电层,以避免光刻过程中电荷积聚。为了进一步减轻充电效应,我们使用了相对较低的束电流 (0.3 nA)、多通道曝光 (GenISys BEAMER) 和减少电子束在一个区域持续停留时间的写入顺序。光刻胶的总曝光剂量为 1200 uC/cm2,电压为 100 kV (Raith EBPG5000 plus)。曝光后,我们用 TFA 金蚀刻剂 (Transene) 去除导电层,并在 7 C 的冷板上将光刻胶置于 1:3 MIBK:IPA 溶液中显影 90 秒,然后用 IPA 封堵 60 秒,再用 DI 水冲洗。原子层沉积:在进行 ALD 之前,我们在 ICP RIE 工具 (PlasmaTherm Apex) 中使用 10 sccm O2 和 50 W ICP 功率进行三秒等离子曝光,以去除残留聚合物。使用此配方,PMMA 蚀刻速率约为 2.5 nm/s。对于 TiO 2 沉积,我们使用商用热 ALD 室 (Veeco/Cambridge Savannah ALD)。使用四(二甲酰胺)钛 (TDMAT) 和水在 90 C 下沉积非晶态 TiO 2,交替脉冲分别为 0.08 秒和 0.10 秒。沉积期间连续流动 100 sccm N 2,前体脉冲之间的等待时间为 8 秒。沉积速率通常为 0.6 A/循环。 ICP 蚀刻程序:我们通过氯基 ICP RIE 蚀刻(PlasmaTherm Apex)去除过填充的 TiO 2,基板偏压为 150 W,ICP 功率为 400 W,Cl 2 为 12 sccm,BCl 为 8 sccm。蚀刻速率通常为 1.5-1.7 nm/s。SEM 成像:在 5 nm Cr 导电层热沉积后,使用 Carl Zeiss Merlin FE-SEM 对纳米光子结构进行成像。FDTD 模拟:使用 Lumerical 有限差分时域软件模拟环形谐振器、光子晶体腔和光栅耦合器。透射光谱:我们使用自制的共焦显微镜装置,该装置具有独立的收集和激发通道,以进行透射光谱。脉冲超连续源 (430-2400 nm,SC-OEM YSL Photonics) 和光谱仪 (1200 g/mm,Princeton Instruments) 用于宽带测量。为了对单个腔体谐振进行高分辨率扫描,我们使用 50 kHz 线宽、可调 CW 激光器 (MSquared) 进行激发,并使用雪崩光电二极管 (Excelitas) 进行检测。金刚石膜:通过离子轰击 34 生成 500 nm 厚的金刚石膜,并在阿贡国家实验室通过化学气相沉积进行覆盖。在对离子损伤层进行电化学蚀刻后,去除悬浮膜并用 PDMS 印章翻转。然后使用 ~500 nm 的 HSQ 抗蚀剂将它们粘附到 Si 载体上,并在氩气中以 420 C 的温度退火 8 小时。最后,使用 ICP 蚀刻法将膜蚀刻至所需厚度,蚀刻气体为 25 sccm Ar、40 sccm Cl2、400 W ICP 功率和 250 W 偏压功率。蚀刻速率通常为 1.2-1.4nm/s。