Dilan E. Francisco 随着许多航天器成功抵达火星,未来载人登陆火星的可能性比公众想象的要近。然而,实现这一目标的步骤始于月球及其环境。任何长期载人航天探险都需要一个月球基地作为基础。与地球相比,月球对人类健康和生存的危害要大得多。环境含有辐射和月球尘埃,这些已被证明对普通人类是致命的。此外,月球上的土壤无法提供种子和农作物生长所需的营养。出于上述原因,工程师必须提供一个可以容纳和维持宇航员生命的结构。已经研究和开发了几种月球材料作为可能的月球建筑选择,例如铸造风化层和月球混凝土。然而,需要进行进一步的研究,以充分保护宇航员免受太空中所有可能的危险。因此,研发的下一步是通过增材制造和纤维实施来改进已知的建筑选择。玄武岩是一种地球模拟物,具有与月球风化层相似的材料特性,使其成为月球建筑研究的可行资源。用于研究月球风化层改进的程序是 ANSYS 的静态结构特征。具体来说,应用拉伸、压缩和 3 点弯曲测试将得到应力和应变结果,可将其与纯铸造风化层的基线数据进行比较。通过创建玄武岩纤维并将其放入铸造风化层基质中,可以看出,所创建的复合材料比以前更具延展性,而应力值在施加恒定力的情况下略有下降。因此,可以改进已知的加工风化层。此外,未来的技术和研究将进一步改善铸造风化层所包含的方面。
新的太空经济领域正在兴起。新兴的太空产业包括载人航天、卫星服务、轨道转移飞行器、商业空间站、太空制造、商业着陆器等。太空经济包括地月经济和月球和火星经济。太空工厂 (www.factoriesinspace.com) 是新兴太空经济、太空资源和微重力制造领域最大的商业实体在线数据库。该目录于 2018 年开始,目前已拥有 400 个条目,增长迅速。本文的第一部分将定义什么是新的太空经济,并为公司建立分类。将进行文献综述并创建词汇表,以在单一来源中定义相对较新的术语。在定义和接受新的行业类别之前,活动将以不同的方式命名,这使得确定竞争对手和估计市场规模变得具有挑战性。出于实际目的,高级类别的数量限制为 10 个。本文的第二部分将介绍哪些公司正在或计划在新的太空经济领域活跃的统计概况。虽然大多数商业着陆器、空间资源、栖息地和空间公用事业(能源、氧气、水、通信)企业都专注于低地球轨道和月球,但一旦出现发射机会和市场,其中许多企业可能会将火星和深空添加到他们的活动中。在分类中,将对能力、发展状况、地理分布和可用资金进行比较。目标是从 2021 年开始留下一个快照,以便能够开始发现未来十年的趋势和下一个太空市场繁荣。关键词:太空经济、天基经济、地外空间经济、在轨经济、地月经济、太空制造
美国参议院介绍——新的太空环境 六十年前,约翰·肯尼迪总统委托 NASA 将人类送上月球表面。当时,只有美国和苏联拥有重大的国家太空计划,而参与太空的商业公司主要是政府承包商。如今,国际和商业太空格局都大不相同。美国政府对太空探索的投资开启了商业投资太空活动的新时代。美国商业太空部门涵盖了从卫星通信和导航应用到商业发射等各个领域,其经济产出目前估计已达数千亿美元。去年,商业太空行业又创下了另一个重大纪录,第一批民用宇航员进入太空。私营公司发射民用宇航员以及其他商业太空活动证明,纳税人对 NASA 的原始投资已被利用来为快速发展的太空企业创造数千个私营部门就业机会。商业太空行业蓬勃发展的部分原因是美国国会数十年的政策指导。 1990 年,国会修订了《国家航空航天法》,指示 NASA“寻求并鼓励在最大程度上充分实现太空商业利用”和“鼓励和允许联邦政府使用商业提供的太空服务和硬件”(Title 51 USC 20112)。如今,NASA 的商业合作伙伴关系涵盖载人探索、空间科学、技术开发和航空领域。我们很高兴今天能出席委员会会议,向您介绍这些合作伙伴关系如何帮助 NASA 实现其目标。低地球轨道 (LEO) 载人航天合作伙伴关系 2008 年 NASA 授权法案 (PL 110-422) 指出:“...健康而强劲的商业部门可以为 NASA 太空探索计划的成功实施做出重大贡献”,并指出了许多活动:
已经部署。2014 年 1 月,印度空间研究组织成功使用国产低温发动机在 GSLV-D5 发射 GSAT-14 时。3)。印度空间研究组织建造了印度第一颗卫星阿亚巴塔 (Aryabhata),该卫星于 1975 年 4 月 19 日由苏联发射。它以数学家阿亚巴塔的名字命名。1980 年,罗希尼 (Rohini) 成为第一颗由印度制造的运载火箭 SLV-3 送入轨道的卫星。印度空间研究组织随后开发了另外两种火箭:用于将卫星发射到极地轨道的极地卫星运载火箭 (PSLV) 和用于放置卫星的地球同步卫星运载火箭 (GSLV)。4)。印度空间研究组织于 2008 年 10 月 22 日发射了一颗月球轨道器;Chandrayaan-1,以及一颗火星轨道器,该轨道器于 2014 年 9 月 24 日成功进入火星轨道,使印度成为第一个首次尝试成功的国家。未来计划包括载人航天、进一步的月球探索、行星际探测器和太阳航天器任务。2016 年 6 月 18 日,印度空间研究组织创下纪录,一次发射了 20 颗卫星,其中一颗是谷歌的卫星。2017 年 2 月 15 日,印度空间研究组织用一枚火箭 (PSLV-C37) 发射了 104 颗卫星,创造了世界纪录。尼赫鲁和他的亲密助手兼科学家维克拉姆·萨拉巴伊 (Vikram Sarabhai) 成立了印度空间研究组织,从而使印度的太空活动制度化。该组织由印度共和国总理直属的太空部管理。
凯文·丹尼希 美国宇航局的搜救技术曾在地球上拯救了数千人的生命,在未来的月球和火星任务中,这些技术将得到增强,以确保宇航员安全返回。 美国宇航局的搜救 (SAR) 办公室正在开发系统并整合 GNSS,以支持阿尔忒弥斯月球任务。 登月、着陆和返回需要始终具备搜救能力。美国宇航局搜救办公室国家事务任务经理 Cody Kelly 在 1 月份的 ION 国际技术会议上表示,由于距离和不确定性,这意味着必须结合使用 GNSS 和其他地理定位技术,才能在极具挑战性的环境中寻找和营救宇航员。 “在[国际]空间站,你乘坐火箭回家的时间不超过 90 分钟。然而,月球离这里有三天时间,”他说。“通过任何通讯方式,火星离你有 21 分钟的路程,因此,地球上的任务控制中心能够在整个任务期间找到你变得尤为重要。”凯利负责所有载人航天搜救行动,并支持 SpaceX、波音和 Artemis/Orion 任务,他已经提供了专门的搜索和救援数据,用于在低地球轨道 (LEO) 着陆后定位载人航天舱和宇航员。凯利说,当宇航员开始在月球上行动时,由于地形崎岖,搜索和救援将极其困难。“在第一次阿波罗登月期间,宇航员并没有在相对平缓的倾斜地形上远离着陆器。然而,新兴技术计划将采用类似温尼贝戈的探测车,它将穿越着陆区以外的广阔区域,包括月球南极的广阔区域,”他说。
• Bosch Bruguera M.、López Bermúdez S.、Detrell G.、Ewald R.,通过虚拟现实和眼动追踪对 SIRIUS-21 空间模拟进行航天器对接驾驶性能评估,第 75 届国际宇航大会,意大利米兰,2024 年 • Detrell G.、Salman L、Santaeufemia S.,慕尼黑工业大学航空航天硕士载人航天专业课程,ICES-2024-279,第 53 届国际环境系统会议,美国肯塔基州路易斯维尔,2024 年 • De Micco、Veronica 等人,植物和微生物科学与技术作为太空生物再生生命支持系统的基石,DOI:10.1038/s41526-023-00317-9,npj Microgravity 9. Jg.,Nr. 1,第 69 页,2023 年 • Detrell, G.:用于月球基地氧气和食物生产的 Chlorella Vulgaris 光生物反应器——潜力与挑战,DOI:10.3389/fspas.2021.700579,天文学和空间科学前沿,2021 年 • Detrell G.、Helish H.、Keppler J.、Martin J.、Henn N.:从生物过滤到气体通量生物处理的有前景的选择,第 20 章 - 用于太空应用的微藻联合空气活化和生物质生产,DOI:10.1016/B978-0-12-819064-7.00020-0,2020 年 • Detrell G.、Schwinning M.、Ewald R.:学习如何设计空间站的国际和跨学科方法, DOI:10.1016/j.actaastro.2018.12.009,宇航学报,2019 • Detrell G.、Keppler J.、Helisch H.、Martin J.、Belz S.、Henn N.、Ewald R.、Fasoulas S.、Hartstein H.、Angerer O.:PBR@LSR 实验 – 准备飞行, IAC-18-A1.7.6,第 69 届国际宇航大会,德国不来梅,2018 年
i. 地球上的生命 [ 4 个讲座]:原始条件下有机分子的形成、热液喷口的作用;RNA 在第一个自我复制系统假设中的意义;细胞生命的出现;代谢途径的发展;以及产氧光合作用的兴起。 ii. 太空环境中的地球生命 [5 个讲座]:微生物对太空物理极端条件的适应,例如温度、辐射、压力、重力和地球化学极端条件(例如干燥、盐度、 pH 值、氧气耗尽或极端氧化还原电位);模拟地球上的月球和军事环境。 iii. 太空生命的生物特征 [5 个讲座]:生命的定义;寻找我们所知的生命;寻找我们不所知的生命;太空生命的潜在生物特征;分子、同位素和形态生物特征,例如特定的有机分子、同位素比和微化石结构;了解当前检测方法的局限性并讨论潜在发现对我们理解宇宙生命的影响;在光谱数据中识别潜在的生物特征 iv. 生命研究的空间仪器 [5 个讲座]:现场生命检测和监测太空生命的方法;从任务科学到飞行硬件;行星保护和污染控制;样品处理和流体学;热环境和调节;抗辐射;虚拟原型;仪器验证平台(实验室、气球、火箭、立方体卫星、国际空间站、AUV 等)。 v. 印度航天任务中的天体生物学和空间生物学 [2 个讲座]。 Gaganyaan 和载人航天。 Chandrayaan-4、Chandrayaan-5、Bharatiya Antariksha 站、金星和火星任务(检测生物特征)。 c. 先决条件(如果有):N/A d. 包含在学习课程手册中的简短摘要:
• 投入 74.78 亿美元(比 2022 财年增加 6.87 亿美元)推进阿尔特弥斯任务并让美国宇航员最早在 2025 年重返月球,从而实现从月球到火星的探索,并加强美国在载人航天领域的领导地位。 • 投入 24 亿美元用于地球科学和观测,向科学家和决策者免费提供详细的气候数据,并投入超过 5 亿美元用于减少航空对气候的影响,以应对全球气候危机。这包括为温室气体监测和信息系统的原型能力提供资金,该系统是地球信息中心的一部分,可满足联邦、州和地方政府以及其他用户的需求,并与其他机构和合作伙伴合作实施。 • 通过国际空间站 (ISS) 的运行,支持人类继续在低地球轨道 (LEO) 存在到 2030 年,并投入 2.24 亿美元与美国工业界合作建设商业空间站,在这些新空间站于 2020 年代末投入使用时启动从 ISS 的过渡。 • 推进月球和火星的机器人探索,包括 4.86 亿美元用于月球科学任务和 8.22 亿美元用于火星样品返回。 • 推动太空技术的研究和开发,提高任务能力并发展商业太空产业,增加 3.38 亿美元,包括 2.7 亿美元用于行业合作、4500 万美元用于太空核能和推进,以及 1500 万美元用于早期轨道碎片研究和技术开发。 • 扩大和多样化学生对科学、技术、工程和数学 (STEM) 的参与,为 STEM 参与办公室提供 1.5 亿美元,以激励和培养下一代科学家、工程师和探险家。深空探索系统 - 74.78 亿美元(比 2022 财年总统要求增加 10.8%,比 2022 财年颁布增加 10.1%)
生命支持系统 (LSS) 对载人航天至关重要;没有它们,人类就无法生存。即将到来的长期任务需要强大的环境控制 LSS (ECLSS),因为它们的日照和即时补给的前景有限。作为 LSS 的一部分,由于运输质量限制,水净化系统将需要高可靠性、可持续性和效率,因为常规供水将非常困难,而且为未来的栖息地补给成本高昂。这表明需要一种高效的处理方法和对每个废水源的再利用。机组人员会产生各种废水流,虽然目前并非所有废水流都经过处理,但栖息地的成功将需要对每条废水流进行处理和利用,作为“资源”而不是“废物”。这些废水流包括人类废水(尿液、粪便)、食物垃圾(盘子垃圾、不可食用的植物生物质)、湿度冷凝水、卫生用水(淋浴、口腔、洗手)和洗衣。由于长期运营,人们通常依赖成熟的技术。对于未来长期任务,这种模式必须转变,纳入以满足任务要求为基础的技术,而不是牺牲生产力来取代经过验证的现有技术能力。许多物理、化学和生物水处理技术已被证实并可用于陆地应用。在此,这些技术被收集到一个“工具箱”中,以在重力减小的情况下执行有效水净化步骤的可能功能。选择标准取决于方法(物理、化学或生物)、复杂性/组件、陆地性能和对太空生命支持的潜在适用性。利用这种“工具箱”方法为技术开发和选择未来架构提供了一种简化的方法,以直接响应动态空间生命支持要求。建立“工具箱”还可以有组织、高效地识别最合适的技术。从那里,可以进一步开发和适当评估最有可能配置为任务要求的技术。本演讲旨在全面回顾空间生命支持水净化要求和挑战,并提出可用技术的“工具箱”方法,以帮助完成为短期和长期 NASA 任务架构选择合适的 LSS 水净化的艰难过程。
2022—2024年,中国空间科学计划、深空探测计划和载人航天计划进展迅速。中国科学院2011年启动实施的空间科学战略性先导计划两期均取得了丰硕的科学成果,其中一期包括暗物质粒子探测器(DAMPE)、实践十号(SJ-10)、空间量子实验(QUESS)和硬X射线调制望远镜(HXMT),二期包括太极一号(太极计划首次技术演示任务)、引力波高能电磁对应体全天空监测器(GECAM)、先进空间太阳天文台(ASO-S)、爱因斯坦探测器(EP)、太阳风磁层电离层链接探测器(SMILE)。中国首个综合性太阳探测任务——先进空间太阳天文台(ASO-S)和致力于软X射线时域天文学探测的爱因斯坦探测器(EP)分别于2022年10月9日和2024年1月9日发射。中国与欧空局的联合任务——太阳风磁层电离层链接探测器(SMILE)计划于2025年底发射。全球首颗助力联合国2030年可持续发展议程的科学卫星——SDGSAT-1已运行两年半,为推动国际可持续发展目标实施提供了宝贵数据。主要研究伽马暴的中法联合任务天基多波段可变目标监测器(SVOM)于2024年6月22日发射,轨道高度约635公里。未来还将围绕极端宇宙、时空涟漪、日地全景、宜居行星、太空生物和物理科学五大科学主题开展新的科学任务。在月球与深空探测方面,嫦娥六号探月任务于2024年6月25日重返大气层并成功着陆地球,完成从月球背面采集首批样本的历史性使命。在载人航天领域,中国空间站已于2022年底全面部署,进入应用发展阶段。开展了空间生命科学与生物技术、空间材料与器件、空间材料与器件、空间材料与器件等多个领域的科研项目。